1 4th Year Materials Engineering

Mechanics of Composite Materials — Lecture 4

2 Last Week

2.1 Summary

http://mconry.ucd.ie/ mconry/4th_Materials_Engineering/

e Stiffness c;ji

e 21 unique values

e Reduced notation Cjj, 6 X 6 matrix
e Material Symmetries

— Some terms — 0
— Some terms functions of other terms

— = less than 21 indept. vals

e Plane stress

3 Orthotropic — Stiffness Matrix

3.1 3 Perpendicular Planes of Symmetry

o11 [C11 Ci2 Ci3 0 0 07 [en

022 Ci2 Cy Coz3 0 0 0 €22

o3| [Ciz C C3z3 0 0 0O €33

ou| |0 0 0 Cu O 0 Y23

013 0O 0 0 0 Cs5 0| |m3

o] LO 0 0 0 0 Gl [n2
Note:

e The planes are aligned along the coordinate axes.

e 9 independent elastic constants

Tensor subscript

Matrix subscript

11

1

22

33

23

13

AR R AR AR aR

12

O T = | W DN

MConry



4 Transversely Isotropic — Stiffness Matrix

4.1 Axis of Rotational Symmetry (z3 axis)

o11 Ci1 Ci2 Ci3 0 0 0 €11

092 Ci2 Cun Ciz3 0 0 0 €22

o33  |Ciz Ciz Cs3 0 0 0 €33

J923 o 0 0 0 055 0 0 Y23

013 0 0 0 0 GCs 0 713

1012 L 0 0 0 0 0 %(CH - 012)_ | Y12
Note:

e The axis is aligned along a coordinate direction
e 5 independent elastic constants

Note, that if you rotated the material so that the axis of symmetry was not aligned along the coordinate
direction, then the stiffness matrix would not look as neat. There would not be as many zeros there.
However, there would still be only 5 (or 9 for orthotropic) independent numbers. The other terms would be
combinations of these numbers.

Also, you should note how the shear and normal components of stress/strain are decoupled. Normal
stresses produce only normal strains and vice versa. Equally, shear strain gives rise only to shear stress.

5 Transversely Isotropic — Stiffness Matrix

5.1 Axis of Rotational Symmetry (z; axis)

[o11] [C11 Ci2 Cis 0 0 07 [en]

092 Ci2 Cy Cag 0 0 0 €22

o33 _ |Ci2 Caz O 0 0 0 €33

ol |0 0 0 $(Coa—Ca3) O 0 V23

013 0o 0 0 0 Ces 0 73

1012 L 0 0 0 0 0 066_ | Y12
Note:

e The axis is aligned along a coordinate direction

e 5 independent elastic constants

6 Plates — Simplifications

6.1 Orthotropic

If laminate is Orthotropic (cross-ply laminate), we get

o11 Ci1 Ciz2 0 €11
op| =|Ca Cxr 0 €22
012 0 0 Ces] |2
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X3

Fibre Directions

7 Plates — Simplifications

7.1 Transversely Isotropic

If laminate is in fact transversely isotropic (unidirectional laminate), we get

11 Cip Ci2 O €11
op| =|C2 Cxr 0 €22
o12 0 0 Ces] |72

X3

Fibre Direction

Note that the decoupling of shear/extensional stress/strain is crucial to this step. The plane of the plate
has to be closely related to the principle directions of the laminate. Note, corrected from last week.

8 Unidirectional Composite Plate Mechanics

Unidirectional plate loaded parallel to fibres.
Assume perfect fibre-matrix bonding
e 0y =FEre;

® Oy = Lime€l
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Le. they have the same strain, €;, but (usually) different stresses.

Fibre
N

in
2
Load (P)

Ef>Em$O'f>O'm

9 Unidirectional Composite Plate Mechanics

Say load is P (newtons). Cross Sectional Area is A.

Average stress is

P
o1 =4 = e1 B Average for plate
If we are loading parallel to fibres, then
P =P;+ P,
=0 fA fto mAm

Quantities subscripted with an f refer to the fibres, while subscripts of m refer to the matrix. Divide across

by (Aey1), and recall that € = €5 = €,.
P oAy omAm
A A el A
Ay A

Byv=Epy + Eny

10 Unidirectional Composite Plate Mechanics

There is nothing in the composite except fibre and matrix, so this hopefully makes sense.

Note A¢+A,, = A (i.e. there is nothing in the material except fibre and matrix). If the fibres are continuous,
then the volume of each phase (fibre, matrix) is proportional to its cross sectional area. This is the same
as saying that the volume of a tin can is proportional to the are of the end: volume = area x length. Since
both fibre and matrix have the same “length” (the length of the plate along the fibre direction, the ratio of
their volumes is the same as the ratio of their cross sectional areas. Volume Fraction of Fibre or Matrix: ¢y

or Q-
A A
(bfzjf (bm:A Of+ om =1

Look again at Stiffness of plate:

A A,
By = By + En 3t

=FE¢pr + Endm
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Which we can rewrite:

Ey =Ef¢s+ Ep(1— ¢y)

Rule of Mixtures Equation
11 Unidirectional Composite Plate Mechanics

Now, for the direction normal to the fibre direction. Find F5. In this case, the applied load acts
transverse to the fibres, this means stress on fibre and matrix is the same.

Of = 0m =02

Matrix Fibre

Load (P)
Load (P)

' 2

Strains are:

ef = o02/Ey €m = 02/ Ep,

12 Unidirectional Composite Plate Mechanics

The total strain is equal to the average of the strain of the fibres and of the matrix. Average using
Volume Fraction.

€2 = Qrer + Omem

In case this is not clear, it is explained as follows. Say the Fibre and Matrix are arranged as shown in
this simplified diagram.

Load =| oad
—_— —
e =

Matrix Fibre

Thickness

m Xf
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Clearly, the total original length s is just the sum of the original lengths of the fibres and the matrix.
T2 =2Tf+ T

Since the thickness is constant, and again assuming the fibres are continuous (i.e. the the fibre and matrix
both extend into the page to the same extent), we can say the following about the volume fraction:

Vi _Ar_ay
= —_—— e — = — = e
¢f Viotal A ) 2 x2¢f
Vin Ap L
m = = —_— = — = m = m
¢ Viotal A €2 v 29

Now, if we knew the strain of each of fibre and matrix, we could write down the extension of each part
(extension is strain times original length). We'll put a A in front of a dimension to show that it is an
extension. Then we have.

Axp=epry = epdpraa
AZpy = €nTm = EmPmT2
The extension of the plate as a whole will be the sum of the extensions of the individual phases, which lets
us write:
Axy = Azy + Az
= €fQfT2 + EmPmT2
= (€f¢f + €m¢m) €2
The overall strain e is the overall extension Axg divided by the original length zo:

AJL‘Q

E>3

_ (€05 + emdm) 22
€2

=€fQr + €mPm

€) =

Which is what we set out to show.
Introducing stress (same for fibre and matrix, o3):

= Qref + Omem
= (ﬁfEf +¢mE7
Then B 02 _ <¢f ¢m>_1 - ErEpn
T \Ef  Ej Efém + Endy

13 Unidirectional Composite Plate Mechanics

Two Equations

EfEn,
Ef(l — qf)f) + Em¢f

Ei=E¢pr+ En(1—¢5)  Eo=
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Note: generally Ey > Ep,. ..

Ep,

= ki~ FErp and By~ —r—

Remember:
e [ is stiffness of plate along fibre direction

e [ is stiffness of plate parallel to fibre direction

Notice that in the fibre direction, it is primarily the properties and proportion of the fibre that dominate

the behaviour
Normal to the fibres, the matrix tends to dominate, though as fibre volume fraction increases the plate

becomes stiffer.

14 Unidirectional Composite Plate Mechanics

50 L} L} - L}
Ef vs + E(1-vy) ’
i 4
Ef Em/[Ef(l'Vf)+Em VJ ........... s i
40 - Em (1-Vf) IIIIIIIIIIIIIIIIIIIIII e .'. -

Modulus (GPa)

0 0.2 0.4 0.6 0.8 1
Fibre Volume Fraction (¢)

Note that the properties used here for the fibre and matrix stiffness are the same as used in the worked
example later in this document, and relate to glass fibre embedded in a polyester matrix.

15 Unidirectional Composite Plate Mechanics

15.1 Poisson’s Ratio v;; (note two values)

v12 is the contraction in direction 2 (normal to fibres), when stress applied to direction 1 (parallel to

ﬁbres). €9 — —Ul192€71.

€1 = €1f = €1 We have seen this before
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For each component (fibre, matrix) we can say

€of = —Vf€1f = —Vf€1 €2m = —VUm€im = —Vm€l

€2 = Qreap + Omeam We have seen this before too
= —¢fo61 — GmVme€l
= _(styf + ¢me)61

Therefore, we can say:

V12 = Qfrf + dmlm

16 Unidirectional Composite Plate Mechanics

16.1 Poisson’s Ratio 15, (note two values)

Vo1 # V12 N.B. Very Important

If plate is loaded normal to fibres and has strain e in the direction normal to the fibres, what will its strain
parallel to the fibres be:

€1 = —l21€2

V91 is harder to find than v49. From note (6.N.5) in McCrum and Buckley, the following argument is
presented:
First, write down the two strains in detail for a plate loaded parallel to the two axes 1 and 2:

g1 g9
= — — _ 1
€1 El V21E2 ( )
g1 g9
= — —_— e 2
€2 1/12E1 + 7, (2)

The strain energy of deformationis given by

Q= % (01€1 + 02€9) (3)

Substitute expressions for €1 and ey from above:

1 O’% Vo1 V192 0'%

=-|l=-|=*1t5)owo2+ = 4
@=3 [El (E2 172 (4)

Since we are assuming that the composite is linearly elastic, strain in a direction can be obtained by

differentiating @ with respect to stress in that direction.

0Q o1 1 [var v
= —_— O ——— — — 5
“l 80’1 E1 2 <E2 + E1 72 ( )

Comparing this with Equation (?7), and noting that they must agree for any values of stress o1 and o3, the
elastic constants must be related as follows:

Va1 V12

B Er
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17 Unidirectional Composite Plate Mechanics

17.1 Sample Calculation: Example 6.2

40% ¢y, glass fibre in polyester matrix. 100 MPa applied parallel to fibres, predict all the resulting
strains. Ey = 76GPa, vy = 0.22, E,, = 3GPa, v, = 0.38.
Rule of Mixtures

Ey=Espr+ En(1— ¢5)
= (76)(0.4) + (3)(1 — 0.4) = 32.20GPa

Therefore

o1 100 x 108
L 2R 9.00311
A= E T 32xa 0003

Poisson’s ratio...
V2 = QfVf + dmVm = (0.4)(0.22) — (1 — 0.4)(0.38) = 0.316
So, tensile strain will be:

€3 = —v1ge1 = —(0.316)(0.00311) = —0.000983 = —9.83 x 10~*

18 Unidirectional Composite Plate Mechanics

18.1 Sample Calculation: Example 6.3
Apply 15 MPa parallel to axis 2 (normal to fibres) and find the strains.

__ EB. (9B
E, = Ef(1—¢5) + Em¢y  76(0.6) +3(0.4) 4.87GPa

Therefore strain normal to fibres will be

o2 15 x10° 3
=5, T 1stx100 U8 x 10

The second Poisson’s ratio is given by:

V12 0.316
= FEy— = (4. —— | =0.04
vor = By (4.87) < 259 ) 0.0478

Hence

€1 = —vge3 = —(0.0478)(0.00308) = —1.47 x 1074
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