
1 4th Year Materials Engineering

Mechanics of Composite Materials – Lecture 4

2 Last Week

2.1 Summary

http://mconry.ucd.ie/ mconry/4th Materials Engineering/
� Stiffness cijkl

� 21 unique values

� Reduced notation CIJ , 6× 6 matrix

� Material Symmetries

– Some terms → 0

– Some terms functions of other terms

– ⇒ less than 21 indept. vals

� Plane stress

3 Orthotropic – Stiffness Matrix

3.1 3 Perpendicular Planes of Symmetry



σ11

σ22

σ33

σ23

σ13

σ12

 =



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66





ε11

ε22

ε33

γ23

γ13

γ12


Note:
� The planes are aligned along the coordinate axes.

� 9 independent elastic constants

Tensor subscript Matrix subscript
11 ⇒ 1
22 ⇒ 2
33 ⇒ 3
23 ⇒ 4
13 ⇒ 5
12 ⇒ 6
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4 Transversely Isotropic – Stiffness Matrix

4.1 Axis of Rotational Symmetry (x3 axis)



σ11

σ22

σ33

σ23

σ13

σ12

 =



C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C55 0 0
0 0 0 0 C55 0
0 0 0 0 0 1

2(C11 − C12)





ε11
ε22
ε33
γ23

γ13

γ12


Note:
� The axis is aligned along a coordinate direction

� 5 independent elastic constants

Note, that if you rotated the material so that the axis of symmetry was not aligned along the coordinate
direction, then the stiffness matrix would not look as neat. There would not be as many zeros there.
However, there would still be only 5 (or 9 for orthotropic) independent numbers. The other terms would be
combinations of these numbers.

Also, you should note how the shear and normal components of stress/strain are decoupled. Normal
stresses produce only normal strains and vice versa. Equally, shear strain gives rise only to shear stress.

5 Transversely Isotropic – Stiffness Matrix

5.1 Axis of Rotational Symmetry (x1 axis)



σ11

σ22

σ33

σ23

σ13

σ12

 =



C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C12 C23 C22 0 0 0
0 0 0 1

2(C22 − C23) 0 0
0 0 0 0 C66 0
0 0 0 0 0 C66





ε11
ε22
ε33
γ23

γ13

γ12


Note:
� The axis is aligned along a coordinate direction

� 5 independent elastic constants

6 Plates – Simplifications

6.1 Orthotropic

If laminate is Orthotropic (cross-ply laminate), we getσ11

σ22

σ12

 =

C11 C12 0
C12 C22 0
0 0 C66

ε11

ε22

γ12



2 MConry



X3

X2

X1

Fibre Directions

7 Plates – Simplifications

7.1 Transversely Isotropic

If laminate is in fact transversely isotropic (unidirectional laminate), we getσ11

σ22

σ12

 =

C11 C12 0
C12 C22 0
0 0 C66

ε11

ε22

γ12


X3

X2

X1

Fibre Direction

Note that the decoupling of shear/extensional stress/strain is crucial to this step. The plane of the plate
has to be closely related to the principle directions of the laminate. Note, corrected from last week.

8 Unidirectional Composite Plate Mechanics

Unidirectional plate loaded parallel to fibres.
Assume perfect fibre–matrix bonding

� σf = Ef ε1

� σm = Emε1
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I.e. they have the same strain, ε1, but (usually) different stresses.

Matrix

Fibre

Load (P)

Load (P)

2

1

Ef > Em⇒ σf > σm

9 Unidirectional Composite Plate Mechanics

Say load is P (newtons). Cross Sectional Area is A.
Average stress is

σ1 =
P

A
= ε1E1 Average for plate

If we are loading parallel to fibres, then

P = Pf + Pm

= σfAf + σmAm

Quantities subscripted with an f refer to the fibres, while subscripts of m refer to the matrix. Divide across
by (Aε1), and recall that ε1 = εf = εm.

P

ε1A
=

σfAf

ε1A
+

σmAm

ε1A

E1 = Ef
Af

A
+ Em

Am

A

10 Unidirectional Composite Plate Mechanics

There is nothing in the composite except fibre and matrix, so this hopefully makes sense.
Note Af +Am = A (i.e. there is nothing in the material except fibre and matrix). If the fibres are continuous,
then the volume of each phase (fibre, matrix) is proportional to its cross sectional area. This is the same
as saying that the volume of a tin can is proportional to the are of the end: volume = area× length. Since
both fibre and matrix have the same “length” (the length of the plate along the fibre direction, the ratio of
their volumes is the same as the ratio of their cross sectional areas. Volume Fraction of Fibre or Matrix: φf

or φm.

φf =
Af

A
φm =

Am

A
φf + φm = 1

Look again at Stiffness of plate:

E1 = Ef
Af

A
+ Em

Am

A
= Efφf + Emφm

4 MConry



Which we can rewrite:

E1 = Efφf + Em(1− φf )

Rule of Mixtures Equation
11 Unidirectional Composite Plate Mechanics

Now, for the direction normal to the fibre direction. Find E2. In this case, the applied load acts
transverse to the fibres, this means stress on fibre and matrix is the same.

σf = σm = σ2

Matrix

2
1

Lo
ad

 (
P

)

Lo
ad

 (
P

)

Fibre

Strains are:

εf = σ2/Ef εm = σ2/Em

12 Unidirectional Composite Plate Mechanics

The total strain is equal to the average of the strain of the fibres and of the matrix. Average using
Volume Fraction.

ε2 = φf εf + φmεm

In case this is not clear, it is explained as follows. Say the Fibre and Matrix are arranged as shown in
this simplified diagram.

xm xf

x2

FibreMatrix

T
hi

ck
ne

ss

LoadLoad
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Clearly, the total original length x2 is just the sum of the original lengths of the fibres and the matrix.

x2 = xf + xm

Since the thickness is constant, and again assuming the fibres are continuous (i.e. the the fibre and matrix
both extend into the page to the same extent), we can say the following about the volume fraction:

φf =
Vf

Vtotal
=

Af

A
=

xf

x2
⇒ xf = x2φf

φm =
Vm

Vtotal
=

Am

A
=

xm

x2
⇒ xm = x2φm

Now, if we knew the strain of each of fibre and matrix, we could write down the extension of each part
(extension is strain times original length). We’ll put a ∆ in front of a dimension to show that it is an
extension. Then we have.

∆xf = εfxf = εfφfx2

∆xm = εmxm = εmφmx2

The extension of the plate as a whole will be the sum of the extensions of the individual phases, which lets
us write:

∆x2 = ∆xf + ∆xm

= εfφfx2 + εmφmx2

= (εfφf + εmφm) x2

The overall strain ε2 is the overall extension ∆x2 divided by the original length x2:

ε2 =
∆x2

x2

=
(εfφf + εmφm) x2

x2

= εfφf + εmφm

Which is what we set out to show.
Introducing stress (same for fibre and matrix, σ2):

ε2 = φf εf + φmεm

= φf
σ2

Ef
+ φm

σ2

Em

=
(

φf

Ef
+

φm

Em

)
σ2

Then
E2 =

σ2

ε2
=

(
φf

Ef
+

φm

Ef

)−1

=
EfEm

Efφm + Emφf

13 Unidirectional Composite Plate Mechanics

Two Equations

E1 = Efφf + Em(1− φf ) E2 =
EfEm

Ef (1− φf ) + Emφf
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Note: generally Ef � Em. . .

⇒ E1 ≈ Efφf and E2 ≈
Em

(1− φf )

Remember:
� E1 is stiffness of plate along fibre direction

� E2 is stiffness of plate parallel to fibre direction

Notice that in the fibre direction, it is primarily the properties and proportion of the fibre that dominate
the behaviour

Normal to the fibres, the matrix tends to dominate, though as fibre volume fraction increases the plate
becomes stiffer.

14 Unidirectional Composite Plate Mechanics
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Ef vf + Em(1-vf)
Ef vf

Ef Em/[Ef(1-vf)+Em vf]
Em/(1-vf)

Note that the properties used here for the fibre and matrix stiffness are the same as used in the worked
example later in this document, and relate to glass fibre embedded in a polyester matrix.

15 Unidirectional Composite Plate Mechanics

15.1 Poisson’s Ratio ν12 (note two values)

ν12 is the contraction in direction 2 (normal to fibres), when stress applied to direction 1 (parallel to
fibres). ε2 = −ν12ε1.

ε1 = ε1f = ε1m We have seen this before
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For each component (fibre, matrix) we can say

ε2f = −νf ε1f = −νf ε1 ε2m = −νmε1m = −νmε1

ε2 = φf ε2f + φmε2m We have seen this before too
= −φfνf ε1 − φmνmε1

= −(φfνf + φmνm)ε1

Therefore, we can say:

ν12 = φfνf + φmνm

16 Unidirectional Composite Plate Mechanics

16.1 Poisson’s Ratio ν21 (note two values)

ν21 6= ν12 N.B. Very Important

If plate is loaded normal to fibres and has strain ε2 in the direction normal to the fibres, what will its strain
parallel to the fibres be:

ε1 = −ν21ε2

ν21 is harder to find than ν12. From note (6.N.5) in McCrum and Buckley, the following argument is
presented:

First, write down the two strains in detail for a plate loaded parallel to the two axes 1 and 2:

ε1 =
σ1

E1
− ν21

σ2

E2
(1)

ε2 = −ν12
σ1

E1
+

σ2

E2
(2)

The strain energy of deformationis given by

Q =
1
2

(σ1ε1 + σ2ε2) (3)

Substitute expressions for ε1 and ε2 from above:

Q =
1
2

[
σ2

1

E1
−

(
ν21

E2
+

ν12

E1

)
σ1σ2 +

σ2
2

E2

]
(4)

Since we are assuming that the composite is linearly elastic, strain in a direction can be obtained by
differentiating Q with respect to stress in that direction.

ε1 =
∂Q

∂σ1
=

σ1

E1
− 1

2

(
ν21

E2
+

ν12

E1

)
σ2 (5)

Comparing this with Equation (??), and noting that they must agree for any values of stress σ1 and σ2, the
elastic constants must be related as follows:

ν21

E2
=

ν12

E1
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17 Unidirectional Composite Plate Mechanics

17.1 Sample Calculation: Example 6.2

40% φf , glass fibre in polyester matrix. 100 MPa applied parallel to fibres, predict all the resulting
strains. Ef = 76GPa, νf = 0.22, Em = 3GPa, νm = 0.38.

Rule of Mixtures

E1 = Efφf + Em(1− φf )
= (76)(0.4) + (3)(1− 0.4) = 32.20GPa

Therefore

ε1 =
σ1

E1
=

100× 106

32× 109
= 0.00311

Poisson’s ratio...

ν12 = φfνf + φmνm = (0.4)(0.22)− (1− 0.4)(0.38) = 0.316

So, tensile strain will be:

ε2 = −ν12ε1 = −(0.316)(0.00311) = −0.000983 = −9.83× 10−4

18 Unidirectional Composite Plate Mechanics

18.1 Sample Calculation: Example 6.3

Apply 15 MPa parallel to axis 2 (normal to fibres) and find the strains.

E2 =
EfEm

Ef (1− φf ) + Emφf
=

(76)(3)
76(0.6) + 3(0.4)

= 4.87GPa

Therefore strain normal to fibres will be

ε2 =
σ2

E2
=

15× 106

4.87× 109
= 3.08× 10−3

The second Poisson’s ratio is given by:

ν21 = E2
ν12

E1
= (4.87)

(
0.316
32.2

)
= 0.0478

Hence

ε1 = −ν21ε2 = −(0.0478)(0.00308) = −1.47× 10−4
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