1 3rd Year Engineering Materials

Viscoelasticity – Lecture 3

2 Viscoelastic Behaviour

2.1 Typical Creep and Recovery

3 Viscoelastic Behaviour

3.1 Creep and Recovery Models

We can attempt to model the behaviour of a viscoelastic material using simple mechanical elements:

- Springs
- Dashpots/Dampers

3.2 Springs

• Stress in spring:

 $\sigma = k\epsilon$ k is the stiffness of the spring

• Stress is purely a function of the instantaneous strain.

4 Viscoelastic Models

4.1 Dampers

- Strain depends on stress history, not just on stress at a moment in time.
- Stress in dashpot/damper:

$$\sigma = \mu \frac{\mathrm{d}\epsilon}{\mathrm{d}t} = \mu \dot{\epsilon}$$

1

5 Viscoelastic Models

5.1 Available Models

- Spring reminds us of the elasticity behaviour of a viscoelastic material
- Damper reminds us of the viscous behaviour (e.g. creep)
- Combination of spring(s) and damper(s) might give a good model
- Three models will be examined here:
 - Kelvin Model
 - Maxwell Model
 - Standard Linear Solid
- Look at each in turn

6 Viscoelastic Models

6.1 Kelvin Model

- Kelvin Model is composed of a spring and a damper in Parallel
- Stress and Strain are connected as:

$$\sigma = \sigma_1 + \sigma_2$$
$$\epsilon = \epsilon_1 = \epsilon_2$$

• So the Governing Equation is

$$\sigma = k\epsilon + \mu \dot{\epsilon}$$

• We can use this to predict the behaviour of the material...

7 Viscoelastic Models

7.1 Kelvin Model

8 Viscoelastic Models

8.1 Maxwell Model

- Maxwell Model is composed of a spring and a damper in Series
- Stress and Strain are connected as:

$$\sigma = \sigma_1 = \sigma_2$$

$$\epsilon = \epsilon_1 + \epsilon_2$$

• So the Governing Equation is

$$\dot{\epsilon} = \frac{\sigma}{\mu} + \frac{\dot{\sigma}}{k}$$

• We can use this to predict the behaviour of the material...

9 Viscoelastic Models

9.1 Maxwell Model

10 Viscoelastic Models

10.1 Standard Linear Solid Model

- Also known as the Zener Model
- Can represent in a couple of ways
 - Spring in Series with a Kelvin model
 - Spring in Parallel with a Maxwell model

11 Viscoelastic Models

11.1 Standard Linear Solid Model

- Exhibits the following behaviour:
 - Instantaneous elastic strain when stress applied
 - Under constant stress, strain creeps towards a limit
 - Under constant strain, stress relaxes towards a limit
 - When stress is removed, instantaneous elastic recover, followed by gradual recovery towards zero strain.
 - Two time-constants:
 - * One for creep/recovery under constant stress
 - * One for relaxation under constant strain

12 Viscoelastic Models

12.1 Standard Linear Solid Model

