
## 1 3rd Year Design and Production

# Joints – Lecture 5

## **2** Bolted Joints

#### 2.1 Description



### **3** Bolted Joints

#### 3.1 Characteristics

- Low skill, but results are consistent
- Joint can be disassembled and reassembled
- Poorer load transmission than welds
- Good control of clamping force (vs rivets)
- Unintentional loosening can occur (vs rivets, welds)

## 4 Bolted Joints

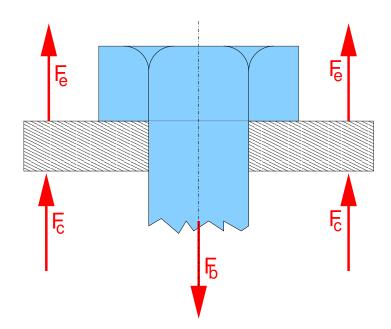
#### 4.1 Tightening

- Load on bolt is considered to be tensile.
- Objective is to create a tensile force within the bolt close to point at which plastic deformation begins to occur
  - Proof Load  $S_p$
  - $S_y$  usually at 0.2% strain
  - $S_p$  less than  $S_y$
- Initial force  $F_i = k_i A_t S_p$ 
  - $-A_t$  is stress area of the thread
  - $0.75 < k_i < 1.0$ , for static loading  $k_i = 0.9$

## 5 Bolted Joints

#### 5.1 Tightening

High Tightening force results in


- Reduced likelihood of separation of clamped members
- Better shear resistance due to friction between clamped members
- Tension typically decreases 10% in a couple of months in any case due to creep, wear, corrosion and "unwinding" of torque in screw.

#### 5.2 Torque

- Tightening torque given by
  - $-T = 0.2F_i D_m$
  - $D_m$  is the major thread diameter
  - Control with torque wrench is  $\pm 30\%$

## 6 Bolted Joints

#### 6.1 Forces



- $F_e$  represents external forces
- $F_b$  is the tensile force in the bolt
- $F_c$  is the compressive clamping force on the plate

## 7 Bolted Joints

#### 7.1 Elasticity

- Joint tightening involves elastic distortion
  - Elongation of the bolt
  - Compression of the clamped members
- Failure occurs when the plates separate
  - Clamping compression is overcome
- No external force  $F_e = 0$  means that  $F_b = F_c = F_i$
- NONzero  $F_e$  means  $F_b$  increases, or  $F_c$  decreases, or both.

$$F_e = \Delta F_b - \Delta F_c$$

#### 8 Bolted Joints

#### 8.1 Elasticity

• Relative changes of  $F_b$  and  $F_c$  depend on relative elasticity

$$\delta_b = \frac{\Delta F_b}{k_b}$$
 while  $\delta_c = -\frac{\Delta F_c}{k_c}$ 

- $k_b$  and  $k_c$  are spring stiffnesses, while  $\delta$  terms are deflections.
- Equating deflections  $\delta_b = \delta_c$  means

$$\Delta F_c = \frac{-k_c}{k_b} \Delta F_b$$

• Substitute this into our expression for  $F_e$  and we get two equations

$$\Delta F_b = \left(\frac{k_b}{k_c + k_b}\right) F_e$$
 and  $\Delta F_c = \left(\frac{-k_c}{k_c + k_b}\right) F_e$ 

## 9 Bolted Joints

#### 9.1 Elasticity

• Allowing for the initial load,  $F_i$ :

$$F_b = F_i + \left(\frac{k_b}{k_c + k_b}\right) F_e$$
$$F_c = F_i - \left(\frac{k_c}{k_c + k_b}\right) F_e$$