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1 Introduction
Non-destructive Testing and Evaluation (NDT&E) is critical in the safety as-
surance of modern engineering structures. One of the most common techniques
used in NDT&E is ultrasonic testing. Conventional ultrasonic NDT&E relies
mainly on through thickness wave propagation. For plate-like sections, this is a
very slow process. The present research is focused on exploring an alternative
form of propagating waves. Lamb waves are waves that propagate longitudi-
nally along a plate (as opposed to transversely through the plate thickness). At
least two propagating (Lamb) modes can exist at any given frequency. These
modes are classified as either symmetric or anti-symmetric. The lowest order
symmetric mode is denotedS0 and this is the mode which has been used in this
work. The characteristic equation for symmetric Lamb waves in aluminium
(ν = 1/3) is given in (1).
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Here,Ω (or dimensionless frequency) is defined asωd/ct, q̄ as
√

F 2 − Ω2/4,
ands̄ as

√
F 2 − Ω2. ω is angular frequency,d is the plate half thickness,F is

the dimensionless wavenumber, andct is the transverse wave speed of the plate
material.

2 Finite Element Modelling
The models presented here were implemented in ABAQUS, using two dimen-
sional plane strain, linear elastic elements. The material properties used for the
plate are those ofaluminium : Young’s modulus (E = 70.7GPa), Poisson’s
ratio (ν = 1/3) and density (ρ = 2700 kg/m3). A steady state dynamic analysis
was performed. Frequencies in the rangeΩ < 2 were used as this is safely
below the cut off frequency of theS1 mode. The results presented here relate
to two classes of “lozenge” shaped symmetrical defects, studied separately in
half plate models. Surface breaking and embedded defects have been studied.
The defect geometries can be seen in fig. 1.

Figure 1: Schematic of Model Geometry for Embedded and Surface Defects
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One height of defect will be presented here, which is 60% of plate thickness.
This is a large defect, and has been chosen to emphasise some features of Lamb
wave reflection. The defect width is varied from 0.0 to 0.6 of plate thickness.
Reflection coefficient is plotted against defect width for embedded (fig. 2) and
surface breaking (fig. 3) defects. The reflection coefficient is the ratio of the
amplitude of the wave reflected from the defect to that of the incident wave.

Figure 2: Reflection Coefficients for Central Embedded Defect (0.6)
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Figure 3: Reflection Coefficients for Symmetrical Surface Defect (0.6)
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Figure 4: Reflection Coefficients for Vertical embedded Crack
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3 Discussion
From the results of the analyses presented in§ 2, it is clear that the reflec-
tion coefficient from embedded defects depends strongly on the defect width.
This dependence is very weak for surface defects. Koshiba has observed a
similar distinction in the behaviour of surface breaking versus embedded de-
fects [Koshiba et al., 1984].

Also clearly apparent is that for particular combinations of defect width and
frequency, the reflection coefficient peaks at near unity, and then falls rapidly as
defect width increases further. Higher frequencies peak for narrower defects.
Indeed the wavelength and peak reflection defect-width are roughly propor-
tional. The overall frequency/reflection relation: that defects reflect better at
higher frequencies (at least until resonant behaviour occurs) is also apparent.
This relationship is also true for simple vertical defects, as can be seen in fig. 4.

Assuming the resolution of a signal processing system can distinguish re-
flection coefficients greater than 10% from background noise, it is clear that
all widths of defect studied could be potentially detected. The difficulty that
a given reflection coefficient for a particular frequency input could correspond
to one of two defect widths (or, in general, to a different height width combi-
nation) could possibly be to overcome by evaluating the behaviour of a range
of frequencies. The combined behaviour of the components could give a sig-
nature for the defect. For surface defects, it would be more straightforward to
determine defect depth, though there would be very little information on defect
width.
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