
Notes on Wave Propagation in Anisotropic
Elastic Solids

Michael Conry
michael.conry@softhome.net

Tue Jun 18 16:20:07 IST 2002

Abstract

The aim of this document is to summarise the information on elastic
material properties, and wave propagation which I have found in my recent
reading. The books read are listed at the end of this document, and cited
throughout. First, the basic consititutive equations governing elastic solids
are presented. Once the concept of elastic properties has been established,
our attention turns to the various symmetry classes which exist. These sym-
metries simplify the material properties. I have written more on symmetry
than I had expected to, as the area turned out to be surprisingly interest-
ing. Following on from the exposition of the material properties of various
symmetry classes, we look at solving the dynamic elastic equations for spe-
cific materials. Slowness curves are introduced and calculated for particular
cases.

It is important to note that this document is still a work in progress. If
anyone actuallydoesread it, and has suggestions/corrections, I would be
very glad to hear from them atmichael.conry@softhome.net
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1 Basic Equations

The dynamic behaviour of a linear elastic generally anisotropic solid can be conve-
niently expressed using tensorial notation as shown below in equation (1), where
indices i and j vary over 1,2,3. The usual tensor summation convention is as-
sumed1

∂σ ′i j
∂x′j

= ρ
′∂

2u′i
∂ t2 (1)

Equation (1), is written in the reference orthogonal coordinate systemx′i =(x′1,x
′
2,x

′
3).

The constitutive relations, which show the interdependence of strain (ε ′kl) and
stress (σ ′i, j ) can be given either in terms of stiffnesses (c′i jkl )

σ
′
i, j = c′i jkl ε

′
kl (2)

or inversely in terms of compliances (s′i jkl ) as in equation (3).

ε
′
i, j = s′i jkl σ

′
kl (3)

Finally, strain and displacement (u′i) are related as shown in equation (4).

ε
′
k,l =

1
2

(
∂u′l
∂x′k

+
∂u′k
∂x′l

)
. (4)

In all of these equations, the presence of the prime indicates that the quantities are
defined in the reference coordinate system.

Symmetry arguments allow some simplification of the quantities just intro-
duced. The strain and stress tensors are symmetric, i.e.σ ′i j = σ ′ji andε ′i j = ε ′ji .
Thus, the stiffness (and compliance tensors must have a corresponding degree of
symmetry which leads to the simplifications shown in equation (5).

c′i jkl = c′jikl = c′i jlk = c′jilk (5)

1Summation over repeated indices:xi, jy j = xi,1y1 +xi,2y2 +xi,3y3.
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By energy considerations, as demonstrated in Nayfeh [6] and Auld [1], it can be
shown that there is further symmetry in the stiffness and compliance tensor. The
argument begins with a definition of strain energy density,U , and the use of the
constitutive relation (2).

U = 1
2σ

′
i j ε

′
i j = 1

2c′i jkl ε
′
klε

′
i j (6)

Differentiating this expression gives the result

c′i jkl =
∂ 2U

∂ε ′i j ∂ε ′kl

. (7)

Interchanging the order of differentiation does not change this relation, and we
conclude that

c′i jkl = c′kli j (8)

The simplifications introduced by (5) and (8) mean that rather than having 3×3×
3×3 = 81 independent values,c′i jkl has at most 21 independent coefficients.

2 Reduced Notation

Often, when writing out expressions involving material stiffness properties, it
is convenient to use a reduced notation which takes advantage of the symmetry
present in the stiffness tensors describing even the most general elastic materi-
als. This notation is a convenience, and is widely used in books and papers. In
short, the contractions are as follows, where each pair of subscripts in the tensor
equations is mapped to a single subscript in the reduced equations:

1⇐⇒ 11, 2⇐⇒ 22, 3⇐⇒ 33

4⇐⇒ 23, 5⇐⇒ 13, 6⇐⇒ 12
(9)

To facilitate the use of this notation, engineering shear strain is introduced, defined
as follows:

γ
′
12 = 2ε

′
12, γ

′
13 = 2ε

′
13, γ

′
23 = 2ε

′
23, (10)

We can now rewrite equation (2), using this new notation as shown in equation
(11) (following the lead from Nayfeh [6], upper caseCi j is used to make the
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distinction from the full notationci jkl more apparent).
σ ′11
σ ′22
σ ′33
σ ′23
σ ′13
σ ′12

=


C′11 C′12 C′13 C′14 C′15 C′16
C′12 C′22 C′23 C′24 C′25 C′26
C′13 C′23 C′33 C′34 C′35 C′36
C′14 C′24 C′34 C′44 C′45 C′46
C′15 C′25 C′35 C′45 C′55 C′56
C′16 C′26 C′36 C′46 C′56 C′66




ε ′11
ε ′22
ε ′33
γ ′23
γ ′13
γ ′12

 (11)

3 Material Symmetry

Up to this point, we have been dealing with the most general relationships apply-
ing to linear elastic, generally anisotropic materials. Such materials are referred
to as triclinic materials. Many real materials have inherent symmetries which can
greatly simplify their behaviour. In this section, we will look at some of these
materials.

It is important to introduce the concept of transformation tensors. Transforma-
tions are fundamental to the definition of tensors. In general, a fourth order tensor
such asc′i jkl transforms from the reference coordinate systemx′i to an alternative
coordinate systemxi as follows

cmnop= βmiβn jβokβplc
′
i jkl . (12)

Similarly, a second order tensor such as the stress tensorσ ′i j transforms as follows.

σmn = βmiβn jσ
′
i j . (13)

Finally, a first order tensor such as the displacement tensoru′i transforms simply
as

um = βmiu
′
i . (14)

The transformation tensorβi j has as elements the cosines of the angles between
thexi and thex′j axes.

We will define our various symmetry classes in terms of transformation tensors
(e.g. for a mirror reflection, or a three fold rotation). A symmetry condition means
that the stiffness (or compliance) tensor must be invariant under such a transfor-
mation. This allows the formulation of equations which lead to simplifications in
the stiffness tensor, either through the elimination of entries, or the establishment
of relations between them. This is the method shown in the following treatment.

A slightly different, alternative approach, used by Lekhnitskii [5], is to look at
symmetry in terms of strain energy per unit volume,V̄. Using the tensor summa-
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tion convention,̄V is shown in equation (15).

V̄ =
1
2

ci jkl σi j σkl (15)

Clearly, strain energy is independent of any particular coordinate system. If the
material is symmetric under a coordinate transformation, then the termsci jkl of the
stiffness tensor will also be invariant. The stressesσi j will transform to stresses
σ ′i j in the new coordinate system. Applying these observations to equation (15)
leads to the following result.

1
2

ci jkl σi j σkl =
1
2

ci jkl σ
′
i j σ

′
kl (16)

Given our earlier observations on the transformation of second order tensors (see
equation (13)), we can easily substitute for the termsσ ′i j equivalent expressions in
terms of the untransformed stresses, and the elements of the transformation matrix
βi j . Once this is done, coefficients for particular termsσ11, σ12, . . . are equated
and simplifications become apparent.

The field of crystallography is a large one, and it has developed a rigorous
way of classifying and identifying symmetry classes. I will not attempt a full
examination of material symmetry. I will, however, go so far as to include point
group diagrams for most of the symmetry classes discussed. On these diagrams,
points are marked using either crosses or circles. A cross indicates that a point
is above the plane of the page, a circle indicates a point below the page. Under
the transformations defining the symmetry class, all points shown on the diagram
must be equivalent. In the naming of the groups, a number such as 2 or 3 indicates
a 2 or 3 fold rotation axis.m indicates a plane of mirror symmetry. If we write,
for example, 2/m; this means that the plane of symmetry referred to bym is
perpendicular to the axis referred to by 2. 2mwould mean that the plane of mirror
symmetry was parallel with the 2-fold rotation axis. An overbar, indicates that an
inversion is applied (e.g.̄2 indicates a 2-fold axis with inversion,̄1 is a simple
inversion).

We will see that materials having different point groups may in fact be equiv-
alent in terms of their stiffness tensor symmetry requirements.

It should be noted that Nayfeh’s book [6] simplifies greatly the discussion of
symmetry. He gives only a single example of each class (equivalent to discussing
only one point group). These notes originally (and perhaps to some extent still)
reflect this simplification, though I am attempting to add more detail. Auld [1],
Fedorov [2], and various books on crystallography [3, 4, 7] provide more thorough
treatments of the area.
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1 1̄

Figure 1: Triclinic Symmetry Point Groups

3.1 Triclinic Symmetry

It is worth noting that it is possible to introduce an inversion center without in-
troducing any restrictions to the stiffness tensor. The transformation tensor for an
inversion center is given as:

βi j =

−1 0 0
0 −1 0
0 0 −1

 (17)

Now, since the stiffness tensor is even ordered (its order is 4), requiring iden-
tity under the application ofβi j to ci jkl introduces no restrictions on the terms of
ci jkl . Similarly, in later discussion, any transformation tensors which differ only
in terms of the application of an inversion center are equivalent in terms of their
effects on the stiffness tensor.

It should also be noted that triclinic materials (and indeed all materials) are, of
course, invariant under the identity operation.

3.2 Monoclinic Symmetry

Monoclinic materials are materials having, for example, one plane of mirror sym-
metry. Other examples can be seen in figure 19. Considering the mirror symmetry
case, let us say that this plane coincides with thex′1− x′2 plane. This symme-
try condition requires that the material be invariant under the transformationβi j
defined by equation (18).

βi j =

1 0 0
0 1 0
0 0 −1

 (18)
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2 m 2/m

Figure 2: Monoclinic Symmetry Point Groups

Consider the formation of the termc2312. Clearlyc2312= β2iβ3iβ1iβ2ic
′
i jkl . Now,

looking at equation (18), it is clear that the termsβi j = 0 for i 6= j. Thus we
getc2312= β22β33β11β22c

′
2312=−c′2312. However, we require thatc2312= c′2312,

which leads to the conclusionc′2312= 0. Other elements ofc′i jkl which vanish are
c′1123, c′2223, c′3323, c′1113, c′2213, c′3313andc′1312. These are all the unique terms with
an uneven number of 3’s in their subscript. With these 8 terms removed, we are
left with 13 unique coefficients (compared with 21 for the more general triclinic
material). The form of the reduced stiffness matrix for monoclinic materials is
shown in equation (19).

σ ′11
σ ′22
σ ′33
σ ′23
σ ′13
σ ′12

=


C′11 C′12 C′13 0 0 C′16
C′12 C′22 C′23 0 0 C′26
C′13 C′23 C′33 0 0 C′36
0 0 0 C′44 C′45 0
0 0 0 C′45 C′55 0

C′16 C′26 C′36 0 0 C′66




ε ′11
ε ′22
ε ′33
γ ′23
γ ′13
γ ′12

 (19)

3.3 Orthotropic Symmetry

If we introduce a second plane of symmetry, say thex′1− x′3 plane, we get an
orthotropic material. As well as being invariant under the transformation tensor
(18), this material is also invariant under the transformation tensor (20).

βi j =

1 0 0
0 −1 0
0 0 1

 (20)
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Unique elements ofc′i jkl which vanish under this invariance condition arec′1112,
c′2212, c′3312 andc′1323 (elements with even numbers of 2’s). These simplifications
leave us with 13−4 = 9 independent coefficients. Since we have two orthogonal
planes of symmetry, introducing a third plane will have no further effect on the
stiffness tensor2. The form of the reduced stiffness matrix for orthotropic ma-

2mm 222 mmm

Figure 3: Orthotropic Symmetry Point Groups

terials is shown in equation (21). The point diagrams of the symmetry classes
satisfied by this equation are shown in figure 3.

σ ′11
σ ′22
σ ′33
σ ′23
σ ′13
σ ′12

=


C′11 C′12 C′13 0 0 0
C′12 C′22 C′23 0 0 0
C′13 C′23 C′33 0 0 0
0 0 0 C′44 0 0
0 0 0 0 C′55 0
0 0 0 0 0 C′66




ε ′11
ε ′22
ε ′33
γ ′23
γ ′13
γ ′12

 (21)

3.4 Tetragonal Symmetry

In the next symmetry case, we introduce the concept of transformation by rotation.
For the case of a counterclockwise rotation of an angleφ about thex′3 axis, the

2Nayfeh [6] incorrectly states that if we have two perpendicular planes of mirror symmetry,
then any plane normal to them must also be a plane of mirror symmetry. Working through the
elementary calculations, we see that combining (18) and (20) does not produce the transformation
matrix of the third plane of symmetry, but differs from it by a factor of−1 (it is equivalent to a
two-fold rotation axis aligned along the intersection of the two mirror-planes). We have already
seen (§3.1) that an inversion imposes no extra conditions on the stiffness matrix. Thus, Nayfehis
correct in ignoring the effect of a third plane of mirror symmetry on the stiffness tensor.
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4 4̄ 4/m

422 4mm 4̄2m

4/mmm

Figure 4: Tetragonal Symmetry Point Groups
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transformation matrixβi j is given as

βi j =

 cosφ sinφ 0
−sinφ cosφ 0

0 0 1

 . (22)

Fedorov [2] describes the tetragonal symmetry class. In this case, we say
that the material properties are invarient under rotations ofφ = π/2 about axisx′3.
These systems have 6 significant elastic moduli3 The form of the reduced stiffness
matrix for tetragonal materials is shown in equation (23).

σ ′11
σ ′22
σ ′33
σ ′23
σ ′13
σ ′12

=


C′11 C′12 C′13 0 0 0
C′12 C′11 C′13 0 0 0
C′13 C′13 C′33 0 0 0
0 0 0 C′44 0 0
0 0 0 0 C′44 0
0 0 0 0 0 C′66




ε ′11
ε ′22
ε ′33
γ ′23
γ ′13
γ ′12

 (23)

The matrix given in (23) is taken from Fedorov’s work [2], and applies to all
tetragonal materials. Auld [1] (and some Russian workers cited by Fedorov) di-
vide the tetragonal (and trigonal, see below) systems into subclasses with either 7
or 6 independent moduli. The classes with 6 moduli have the matrix as shown in
(23), while those with 7 have a matrix in the form of (24) below.

σ ′11
σ ′22
σ ′33
σ ′23
σ ′13
σ ′12

=


C′11 C′12 C′13 0 0 C′16
C′12 C′12 C′13 0 0 −C′16
C′13 C′13 C′33 0 0 0
0 0 0 C′44 0 0
0 0 0 0 C′44 0

C′16 −C′16 0 0 0 C′66




ε ′11
ε ′22
ε ′33
γ ′23
γ ′13
γ ′12

 (24)

The classess with 7 moduli are 4,4̄ and 4/m. Those with 6 are 4mm, 422,4̄2mand
4/mmm. Fedorov asserts that the distinction is artificial, and that correct choice
of axes reduces all tetragonal (and trigonal) systems to 6 independent significant

3Fedorov quotes different numbers of independent elastic moduli to Nayfeh, and also to Auld.
For example, in the case of monoclinic crystal he gives the number of 12, as opposed to 13 in
Nayfeh’s work. As far as I understand, this discrepancy is because Fedorov uses the 13th number
to fix the orientation of the coordinate system. Thus, for the orthorhombic/orthotropic system,
Nayfeh and Fedorov agree on the number of 9, as the two perpendicular planes are sufficient to fix
the orientation of the coordinate system. I should look into this in more detail, and maybe browse
through a book on crystallography (Fedorov alludes to far more detail on symmetry classes than
Nayfeh does).
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moduli. It will be noted that the classes with the larger number of moduli are
those which inherently fix only one direction (principally the axis about which the
rotations occur), while the classes with 6 moduli are those which inherently fix all
coordinate directions (axis of rotation, and normal to a mirror plane, for example).
See also the footnote for a couple of notes. I will go through this in more detail in
the future. The point groups for all of these classes are shown in figure 4.

3.5 Trigonal Symmetry

Materials with trigonal symmetry have a trigonal axis, which we will assume to
coincide withx′3. This means that the material is invariant under rotations of
φ = 2π/3 about thex′3 axis. According to Fedorov [2], in this case there are 6
significant moduli (see footnote in§3.4). The form of the reduced stiffness matrix
for trigonal materials is shown in equation (25).

σ ′11
σ ′22
σ ′33
σ ′23
σ ′13
σ ′12

=


C′11 C′12 C′13 C′14 −C′25 0
C′12 C′11 C′13 −C′14 C′25 0
C′13 C′13 C′33 0 0 0
C′14 −C′14 0 C′44 0 C′25
−C′25 C′25 0 0 C′44 C′14

0 0 0 C′25 C′14
1
2(C′11−C′12)




ε ′11
ε ′22
ε ′33
γ ′23
γ ′13
γ ′12

 (25)

Fedorov shows that equation (25) may be simplified by correct choice of coordi-
nate system, to give the form:

σ ′11
σ ′22
σ ′33
σ ′23
σ ′13
σ ′12

=


C′11 C′12 C′13 C′14 0 0
C′12 C′11 C′13 −C′14 0 0
C′13 C′13 C′33 0 0 0
C′14 −C′14 0 C′44 0 0
0 0 0 0 C′44 C′14
0 0 0 0 C′14

1
2(C′11−C′12)




ε ′11
ε ′22
ε ′33
γ ′23
γ ′13
γ ′12

 (26)

As mentioned before in section 3.4, Fedorov [2] and Auld [1] differ on the num-
ber of independent moduli. Fedorov asserts it is 6 for all trigonal classes. Auld
argues that it is 7 for classes 3 and3̄, which have the stiffness matrix as shown in
(25). Auld says that there are 6 significant constants for classes 32, 3m and3̄m.
Similar arguments may be made as in the case of tetragonal systems 3.4. See also
footnotes. More detail required on this topic. The point diagrams for all classes
are shown in figure 5.
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3 3̄ 32

3m 3̄m

Figure 5: Trigonal Symmetry Point Groups
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3.6 Transversely Isotropic Symmetry

To obtain properties for transversely isotropic materials, we can apply the rotation
transformation (22) to the properties for an orthotropic material (see section 3.3).
It is possible to write out expressions for each of the terms in the new stiffness
tensorci jkl . Full details can be found in Nayfeh’s book [6], and can also be found
in the computer code accompanying this document. A couple of samples are
presented here:

c1111= c′1111cos4φ +c′2222sin4
φ +2(c′1122+2c′1212)sin2

φ cos2φ (27)

c2222= c′1111sin4
φ +c′2222cos4φ +2(c′1122+2c′1212)sin2

φ cos2φ (28)

c2212= (c′1111−c′1122−2c′1212)cosφ sin3
φ +(c′1122−c′2222+2c′1212)sinφ cos3φ

(29)

Clearly from (27) and (28), if we require the material properties to be invariant
for φ = π/2, it is necessary forc′1111 andc′2222 to be identical. The full set of
restrictions thus imposed are:

c′1111= c′2222

c′2233= c′1133

c′1313= c′2323

(30)

Further requiring invariance under general rotations about thex′3 axis, leads to
additional restrictions. Consider equation (29). Under the invariance condition,
we requirec2212= c′2212. However, for an orthotropic material,c′2212= 0. This
means that the right hand side of (29) equals zero. This, along with (30) gives the
relation:

c′1111−c′1122= 2c′1212. (31)

Thus, there are 9− 4 = 5 independent coefficients in the stiffness tensor. The
form of the reduced stiffness matrix for transversely isotropic materials is shown
in equation (32). It should be noted that this appears to be identical to the matrix
supplied by Fedorov [2] for the case of a hexagonal crystal. He forms the hexago-
nal case by noting that it is equivalent to the simultaneous presence of identically
direct twofold and threefold axes. He forms the matrixCi j for the hexagonal case
by combining the properties of these two cases (equations (19) and (25)). The
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6 6̄ 6/m

622 6mm 6̄m2

6/mmm

Figure 6: Hexagonal Symmetry Point Groups
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point groups for the hexagonal symmetry case are shown in figure 6.
σ ′11
σ ′22
σ ′33
σ ′23
σ ′13
σ ′12

=


C′11 C′12 C′13 0 0 0
C′12 C′11 C′13 0 0 0
C′13 C′13 C′33 0 0 0
0 0 0 C′55 0 0
0 0 0 0 C′55 0
0 0 0 0 0 1

2(C′11−C′12)




ε ′11
ε ′22
ε ′33
γ ′23
γ ′13
γ ′12

 (32)

3.7 Cubic Symmetry

To define cubic symmetry, we start from the orthotropic case (§3.3), and again
apply rotations, both by angleφ about thex′3 axis (as in§3.6) and by angleγ about
thex′2 axis. We require that the material is invariant for rotationsφ = π/2 andγ =
π/2. This means that the coordinatesx′1, x′2 andx′3 are completely interchangeable.
This reduces by 6 the number of independent stiffness coefficients (compared with
the orthotropic case) to give 9−6 = 3 independent coefficients. The form of the
reduced stiffness matrix for cubic isotropic materials is shown in equation (33).

σ ′11
σ ′22
σ ′33
σ ′23
σ ′13
σ ′12

=


C′11 C′12 C′12 0 0 0
C′12 C′11 C′12 0 0 0
C′12 C′12 C′11 0 0 0
0 0 0 C′66 0 0
0 0 0 0 C′66 0
0 0 0 0 0 C′66




ε ′11
ε ′22
ε ′33
γ ′23
γ ′13
γ ′12

 (33)

3.8 Isotropic Symmetry

Finally, the greatest degree of symmetry possible is isotropic symmetry. In this
case, the material is invariant under rotation by arbitrary anglesγ andφ . In this
case, there are only two independent stiffness constants. The form of the reduced
stiffness matrix for cubic isotropic materials is shown in equation (34) (stress and
strain terms are omitted for clarity). Point group diagrams are superfluous for this
case as every point is equivalent to every other point.

C′11 C′12 C′12 0 0 0
C′12 C′11 C′12 0 0 0
C′12 C′12 C′11 0 0 0
0 0 0 1

2(C′11−C′12) 0 0
0 0 0 0 1

2(C′11−C′12) 0
0 0 0 0 0 1

2(C′11−C′12)

 (34)
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4 Bulk Waves

4.1 Bulk Waves Background

In general, for wave propagation in a direction~n, three types of waves are possible.
These are associated with the directions of the three particle displacement vectors
~u(k) (k = 1,2,3). These can be referred to as having different polarisations. Pure
modes can be defined in different ways, but Nayfeh [6] and Auld [1] define them
as modes where either~u⊥ ~n or ~u ‖ ~n. Where~u⊥ ~n, we say that the mode is
longitudinal. Where~u ‖ ~n, we can say that the mode is shear. In cases where
the modes are not pure, they are described as quasi-longitudinal or quasi-shear,
depending on which they are closest to.

Combining the momentum equation (1) and the stress-strain relation (2) and
the strain-displacement relationship (4), gives the following result:

ρ
∂ 2ui

∂ t2 =
1
2

ci jkl
∂

∂x j

(
∂ul

∂xk
+

∂uk

∂xl

)
(35)

By symmetry arguments (k andl are interchangeable) we can simplify (35) to get

ρ
∂ 2ui

∂ t2 = ci jkl

∂ 2ul

∂xk∂x j
(36)

We look for solutions,ui of the following form, in terms ofζ the bulk wavenum-
ber,~U the displacement amplitude vector (which defines polarisation), and~n the
propagation direction unit vector:

ui = Uie
j(ζn jx j−ωt) (37)

Substituting (37) into (36), and introducingλi jkl = ci jkl /ρ, gives the following:

ω
2Ui =

ci jkl

ρ
ζ

2nkn jUl ⇔ ω
2Ui = λi jkl ζ

2nkn jUl (38)

Now, we introduce the phase velocity,v, defined as follows:

v =
ω

ζ
(39)
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Usingv, equation (38) can be rewritten as follows:(
λi jkl nkn j −v2

δil

)
Ul = 0

⇔
(
Λil −v2

δil

)
Ul = 0

(40)

whereΛil = λi jkl nkn j . Clearly (40) represents an eigenvalue problem, where the
phase velocitiesv are the eigenvalues, and theUl vectors (polarisation vectors)
are the eigenvectors. In general, there will be three phase velocities, accompanied
by three polarisation vectors. These phase velocities and polarisations define a
single (quasi)longitudinal and two (quasi)shear modes. Explicitly, the eigenvalue
problem is as followsΛ11−v2 Λ12 Λ13

Λ12 Λ22−v2 Λ23
Λ13 Λ23 Λ33−v2


U1
U2
U3

= 0 (41)

An important concept to introduce at this stage is theslowness curve. A slow-
ness curve is a plot of the inverse of velocity (units are therefore seconds/metre
or equivalent). Typically, a slowness curve is produced by choosing a plane in
the material of interest, and then calculating the different phase velocities for
a selection of propagation directions. Slowness is then plotted as a function of
propagation direction in a polar plot. Slowness curves feature in most texts deal-
ing with wave propagation in solids. Slowness curves can be combined to obtain
a slowness surface, which would completely characterise the phase velocities of
the possible modes in a given material. However, there are obvious difficulties in
printing or displaying such surfaces.

Another concept which is introduced is theskew curve. This is a plot which
I have only seen in Nayfeh’s work [6]. As was mentioned earlier (page 17), pure
modes are defined as being modes which are either normal to or parallel with the
direction of propagation. Skew is a measure of how far any particular mode devi-
ates from this ideal. If the mode is pure, skew will be zero. For other modes, the
skew is the angle between the polarisation vector and the direction of propagation
(for quasi-longitudinal modes) or the normal to the direction of propagation (for
quasi-shear modes).

4.2 Computation of Slowness and Skew Curves Background

At this point, we are ready to calculate slowness curves for a wide range of mate-
rials. All that is required are the entries from the stiffness tensorci jkl , or equiva-
lently the entries of the reduced stiffness matrixCi j .

We map out the slowness data by considering planes parallel to thex3 axis
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(which without loss of generality, can coincide with thex′3 axis). Given a set
of material propertiesc′i jkl , expressed in the coordinate system (x′1,x

′
2,x

′
3), we can

transform it toci jkl expressed in the coordinate system (x1,x2,x3) by rotating about
the x′3 axis. In this way, we can arrange that the coordinates of any direction of
propagation,~n are of the form

~n =


cosθ

0
sinθ

 where 0≤ θ ≤ 2π (42)

when expressed in the transformed coordinate system. Once the transformed stiff-
ness matrix or tensor is obtained, the angleθ is varied in the range 0≤ θ ≤ 2π,
giving different propagation direction vectors,~n. For each~n, Λi j from equation
(41) is obtained. The eigenvalues and eigenvectors ofΛi j are found. The entire
slowness surface can be determined by applying different rotations aboutx3 and
repeating the process.

An issue that caused me some difficulty when implementing this code was the
sorting of the modes (i.e. which eigenvector/eigenvalue pair corresponds to longi-
tudinal mode, which corresponds to the “fast shear” mode and which corresponds
to the “slow shear” mode). Sorting by phase velocity gives correct results in par-
ticular cases, but for some materials the slowness curves cross each other (we will
see this shortly). Nayfeh [6] indicates that the modes can be identified by looking
at the dot and cross products of their eigenvectors with the propagation direction
~n. This immediately identifies the longitudinal mode, which will generally make
a relatively small angle with the propagation direction. The two remaining shear
modes can then be sorted by how close they come to being normal to the propa-
gation direction. For some cases this is sufficient to sort the modes. However for
other more complicated materials, this leads to “curve-jumping”. An alternative
tried was to sort the shear modes by how close they came to lying along thex2
axis (i.e. to being perpendicular to the plane containing thex3 axis and the prop-
agation directions. Again, this works for some materials, but at particular points
the modes swap over leading to discontinuities in the curves.

The solution I settled on when sorting the modes is as follows. For the first
propagation direction tested, take the dot product of each polarisation vector with
the propagation direction. The vector giving the largest number (smallest angle)
is designated as the quasi-longitudinal mode. Then take the dot product of the
remaining two vectors with the vector(0,1,0). The mode giving the largest dot-
product is designated as the first shear mode. The remaining mode is the second
shear mode. For subsequent propagation directions~n, classify the resulting eigen-
vectors by how close they come to the previous longitudinal or shear modes (again
using dot products). This works as long as each~n is relatively close to the previous
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one (i.e. as long as the increments inθ are relatively small). In this way, the new
vector closest to our last longitudinal vector is the new longitudinal mode. The
new vector closest to the previous first shear mode vector is the new first shear
mode. The remaining vector is the new second shear mode.

4.3 Examples of Slowness and Skew Curves

In this section I will present some sample slowness and skew curves calculated
with the Python code I have written. Material properties used will also be pre-
sented here. The examples chosen are the same as the ones used by Nayfeh, so
that I could more easily verify their correctness.

4.3.1 Aluminium

Aluminium is an isotropic material (this is not true in all cases, for example rolled
aluminium can have directionality in material properties), and has very simple
slowness and skew curves. The propagation velocities are the same for all direc-
tions. Skew is zero for all directions (all modes are pure modes). Additionally, the
two shear modes present are degenerate (they have the same velocity). The slow-
ness curve is shown in figure 7. The material properties are shown in equation 43.

107.50 54.59 54.59 0.00 0.00 0.00
54.59 107.50 54.59 0.00 0.00 0.00
54.59 54.59 107.50 0.00 0.00 0.00
0.00 0.00 0.00 26.45 0.00 0.00
0.00 0.00 0.00 0.00 26.45 0.00
0.00 0.00 0.00 0.00 0.00 26.45

 (43)

4.3.2 InAs

InAs is a cubic material. Its reduced stiffness matrix is given below for coordinate
axes coinciding with cubic axes (i.e. in its simplest form).

83.29 45.26 45.26 0.0 0.0 0.0
45.26 83.29 45.26 0.0 0.0 0.0
45.26 45.26 83.29 0.0 0.0 0.0
0.0 0.0 0.0 39.59 0.0 0.0
0.0 0.0 0.0 0.0 39.59 0.0
0.0 0.0 0.0 0.0 0.0 39.59

 (44)

This gives the slowness and skew curves as shown below in figures 8 and 9.
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Figure 7: Slowness Curve for Isotropic Aluminium
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Rotating by an angle of 45 gives the reduced stiffness matrix shown in (45).
103.86 24.68 45.26 0.0 0.0 0.0
24.68 103.86 45.26 0.0 0.0 0.0
45.26 45.26 83.29 0.0 0.0 0.0
0.0 0.0 0.0 39.59 0.0 0.0
0.0 0.0 0.0 0.0 39.59 0.0
0.0 0.0 0.0 0.0 0.0 19.01

 (45)

Computation of the slowness and skew curves is straightforward. They are plotted
in figures 10 and 11 respectively.

Rotating by an angle of 30 degrees (relative to theoriginal orientation repre-



michael.conry@softhome.net 22

Figure 8: Slowness Curve for InAs,φ = 0
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sented by (44)) gives the reduced stiffnes matrix of (46).
98.72 29.83 45.26 0.00 0.00 −8.91
29.83 98.72 45.26 0.00 0.00 8.91
45.26 45.26 83.29 0.00 0.00 0.00
0.00 0.00 0.00 39.59 0.00 0.00
0.00 0.00 0.00 0.00 39.59 0.00
−8.91 8.91 0.00 0.00 0.00 24.16

 (46)

The computed slowness and skew curves are shown in figures 12 and 13 respec-
tively.
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Figure 9: Skew Curve for InAs,φ = 0
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4.3.3 Graphite-Epoxy (65%-35%)

First, it should be noted that these curves differ significantly from those given
by Nayfeh. There is at least one error in the material properties provided by
Nayfeh4 Graphite-epoxy slowness and skew curves are shown in figures 14 and

4If I remember correctly, the Graphite-Epoxyφ = 30 data cannot be obtained from theφ = 0
data through transformation relations. Rather, it differs in a couple of terms by a factor of -1. The
material properties given here are taken directly from the ones provided by Nayfeh, errors and all,
though I may correct them in the future when I know which data are correct. I will soon begin
reproducing figures from Auld for further validation of this code.

Note on Tue Jun 18 15:50:35 IST 2002: I have done this for quartz, a trigonal material, in
§ 4.3.4.
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Figure 10: Slowness Curve for InAs,φ = 45
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15 respectively. The matrix of stiffness constants is shown in equation (47).
155.43 3.72 3.72 0.00 0.00 0.00
3.72 16.34 4.96 0.00 0.00 0.00
3.72 4.96 16.34 0.00 0.00 0.00
0.00 0.00 0.00 3.37 0.00 0.00
0.00 0.00 0.00 0.00 7.48 0.00
0.00 0.00 0.00 0.00 0.00 7.48

 (47)

Corresponding slowness and skew curves for graphite-epoxy after a 30 degrees ro-
tation are shown in figures 16 and 17. The matrix of material properties following
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Figure 11: Skew Curve for InAs,φ = 45
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this transformation are show in (48).
95.46 28.93 4.03 0.00 0.00 44.67
28.93 25.91 4.65 0.00 0.00 15.56
4.03 4.65 16.34 0.00 0.00 0.54
0.00 0.00 0.00 4.40 −1.78 0.00
0.00 0.00 0.00 −1.78 6.45 0.00
44.67 15.56 0.54 0.00 0.00 32.68

 (48)
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Figure 12: Slowness Curve for InAs,φ = 30
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4.3.4 Quartz

First, it must be noted that in this discussion, the piezoelectric properties are ne-
glected. The material properties given by Auld are as follows

c11 = 8.674×1010N/m2 c12 = 0.699×1010N/m2

c33 = 10.72×1010N/m2 c13 = 0.699×1010N/m2

c44 = 5.794×1010N/m2 c14 =−1.791×1010N/m2

Since quartz is a trigonal material, the remainder of the stiffness matrix can be de-
termined by substituting into (26). Solving the eigenvalue problem for the slow-
ness and skew of the different polarisations gives the results shown in figures 18
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Figure 13: Skew Curve for InAs,φ = 30

 10

 5

 0

 5

 10

 10  5  0  5  10

Skew Curve for InAs φ=30°

L
S1
S2

and 19. Applying a rotation ofπ/2 about theZ axis, gives the slowness and skew
curves shown in figures 20 and 21.

We now look at propagation in the plane perpendicular to theZ axis. This
means that we rotate the coordinates from the first system byπ/2 about theX
axis, or equivalently rotate the coordinates from the second system byπ/2 about
theY axis. The resulting slowness and skew curves are shown in figures 22 and
23.
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Figure 14: Slowness Curve for Graphite Epoxy,φ = 0
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4.3.5 Cadmium Sulfide

Piezoelectric properties are neglected in this case. The material properties given
by Auld are as follows

c11 = 9.07×1010N/m2 c12 = 5.81×1010N/m2

c33 = 9.38×1010N/m2 c13 = 5.10×1010N/m2

c44 = 1.504×1010N/m2

Since cadmium sulfide is a hexagonal material, the remainder of the stiffness ma-
trix can be determined by substituting into (32). Solving the eigenvalue problem
for the slowness and skew of the different polarisations gives the results shown
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Figure 15: Skew Curve for Graphite Epoxy,φ = 0
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in figures 24 and 25. This is for propagation in the plane normal to the axis of
symmetry. Rotating the coordinate system byπ/2 and again solving the eigen-
value problem gives the results for a plane parallel to the axis of symmetry. These
results are shown in figures 26 and 27.
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Figure 16: Slowness Curve for Graphite Epoxy,φ = 30
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Figure 17: Skew Curve for Graphite Epoxy,φ = 30
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Figure 18: Slowness Curve for Quartz,φ = 0, (X−Z Plane)

 0.0004

 0.0003

 0.0002

 0.0001

 0

 1e-04

 0.0002

 0.0003

 0.0004

 0.0004  0.0003  0.0002  0.0001  0  1e-04  0.0002  0.0003  0.0004

Slowness Curve for Quartz, φ=0°

L
S1
S2



michael.conry@softhome.net 33

Figure 19: Skew Curve for Quartz,φ = 0, (X−Z Plane)
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Figure 20: Slowness Curve for Quartz,φ = 90, (Y−Z Plane)
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Figure 21: Skew Curve for Quartz,φ = 90, (Y−Z Plane)
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Figure 22: Slowness Curve for Quartz,φ = 90, (X−Y Plane)
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Figure 23: Skew Curve for Quartz,φ = 90, (X−Y Plane)

 30

 20

 10

 0

 10

 20

 30

 30  20  10  0  10  20  30

Skew Curve for Quartz, φ=90°

L
S1
S2



michael.conry@softhome.net 38

Figure 24: Slowness Curve for CdS,φ = 0, (X−Y Plane)
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Figure 25: Skew Curve for CdS,φ = 0, (X−Y Plane)
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Figure 26: Slowness Curve for CdS,φ = 90, (X−Z Plane)
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Figure 27: Skew Curve for CdS,φ = 90, (X−Z Plane)
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