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Abstract

The aim of this document is to summarise the information on elastic
material properties, and wave propagation which I have found in my recent
reading. The books and papers read are listed at the end of this document,
and cited throughout. First, the basic consititutive equations governing elas-
tic solids are presented. Once the concept of elastic properties has been
established, our attention turns to the various symmetry classes which exist.
These symmetries simplify the material properties. I have written more on
symmetry than I had expected to, as the area turned out to be surprisingly
interesting. Following on from the exposition of the material properties of
various symmetry classes, we look at solving the dynamic elastic equations
for specific materials. Slowness curves are introduced and calculated for
particular cases.

Finally, following the discussion of Slowness curves in bulk anisotropic
materials, attention is turned towards the problem of Lamb waves: guided
waves in plates. This phenomenon is studied for isotropic plates, and also
for anisotropic and inhomogeneous (layered) plates.

It is important to note that this document is still a work in progress. If
anyone actuallydoesread it, and has suggestions/corrections, I would be
very glad to hear from them atmichael.conry@acronymchile.com
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Chapter 1

Bulk Waves

1.1 Basic Equations

The dynamic behaviour of a linear elastic generally anisotropic solid can be con-
veniently expressed using tensorial notation as shown below in equation (1.1),
where indicesi and j vary over 1,2,3. The usual tensor summation convention is
assumed1

∂σ ′i j
∂x′j

= ρ
′∂

2u′i
∂ t2 (1.1)

Equation (1.1), is written in the reference orthogonal coordinate systemx′i =
(x′1,x

′
2,x

′
3). The constitutive relations, which show the interdependence of strain

(ε ′kl) and stress (σ ′i, j ) can be given either in terms of stiffnesses (c′i jkl )

σ
′
i, j = c′i jkl ε

′
kl (1.2)

or inversely in terms of compliances (s′i jkl ) as in equation (1.3).

ε
′
i, j = s′i jkl σ

′
kl (1.3)

Finally, strain and displacement (u′i) are related as shown in equation (1.4).

ε
′
k,l =

1
2

(
∂u′l
∂x′k

+
∂u′k
∂x′l

)
. (1.4)

In all of these equations, the presence of the prime indicates that the quantities are
defined in the reference coordinate system.

Symmetry arguments allow some simplification of the quantities just intro-

1 Summation over repeated indices:xi, jy j = xi,1y1 +xi,2y2 +xi,3y3.
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duced. The strain and stress tensors are symmetric, i.e.σ ′i j = σ ′ji andε ′i j = ε ′ji .
Thus, the stiffness (and compliance tensors must have a corresponding degree of
symmetry which leads to the simplifications shown in equation (1.5).

c′i jkl = c′jikl = c′i jlk = c′jilk (1.5)

By energy considerations, as demonstrated in Nayfeh [1] and Auld [2], it can be
shown that there is further symmetry in the stiffness and compliance tensor. The
argument begins with a definition of strain energy density,U , and the use of the
constitutive relation (1.2).

U = 1
2σ

′
i j ε

′
i j = 1

2c′i jkl ε
′
klε

′
i j (1.6)

Differentiating this expression gives the result

c′i jkl =
∂ 2U

∂ε ′i j ∂ε ′kl
. (1.7)

Interchanging the order of differentiation does not change this relation, and we
conclude that

c′i jkl = c′kli j (1.8)

The simplifications introduced by (1.5) and (1.8) mean that rather than having 3×
3×3×3 = 81 independent values,c′i jkl has at most 21 independent coefficients.

1.2 Reduced Notation

Often, when writing out expressions involving material stiffness properties, it
is convenient to use a reduced notation which takes advantage of the symmetry
present in the stiffness tensors describing even the most general elastic materi-
als. This notation is a convenience, and is widely used in books and papers. In
short, the contractions are as follows, where each pair of subscripts in the tensor
equations is mapped to a single subscript in the reduced equations:

1⇐⇒ 11, 2⇐⇒ 22, 3⇐⇒ 33

4⇐⇒ 23, 5⇐⇒ 13, 6⇐⇒ 12
(1.9)

To facilitate the use of this notation, engineering shear strain is introduced, defined
as follows:

γ
′
12 = 2ε

′
12, γ

′
13 = 2ε

′
13, γ

′
23 = 2ε

′
23, (1.10)
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We can now rewrite equation (1.2), using this new notation as shown in equation
(1.11) (following the lead from Nayfeh [1], upper caseCi j is used to make the
distinction from the full notationci jkl more apparent).

σ ′11
σ ′22
σ ′33
σ ′23
σ ′13
σ ′12

=


C′11 C′12 C′13 C′14 C′15 C′16
C′12 C′22 C′23 C′24 C′25 C′26
C′13 C′23 C′33 C′34 C′35 C′36
C′14 C′24 C′34 C′44 C′45 C′46
C′15 C′25 C′35 C′45 C′55 C′56
C′16 C′26 C′36 C′46 C′56 C′66




ε ′11
ε ′22
ε ′33
γ ′23
γ ′13
γ ′12

 (1.11)

1.3 Material Symmetry

Up to this point, we have been dealing with the most general relationships apply-
ing to linear elastic, generally anisotropic materials. Such materials are referred
to as triclinic materials. Many real materials have inherent symmetries which can
greatly simplify their behaviour. In this section, we will look at some of these
materials.

It is important to introduce the concept of transformation tensors. Transforma-
tions are fundamental to the definition of tensors. In general, a fourth order tensor
such asc′i jkl transforms from the reference coordinate systemx′i to an alternative
coordinate systemxi as follows

cmnop= βmiβn jβokβplc
′
i jkl . (1.12)

Similarly, a second order tensor such as the stress tensorσ ′i j transforms as follows.

σmn = βmiβn jσ
′
i j . (1.13)

Finally, a first order tensor such as the displacement tensoru′i transforms simply
as

um = βmiu
′
i . (1.14)

The transformation tensorβi j has as elements the cosines of the angles between
thexi and thex′j axes.

We will define our various symmetry classes in terms of transformation tensors
(e.g. for a mirror reflection, or a three fold rotation). A symmetry condition means
that the stiffness (or compliance) tensor must be invariant under such a transfor-
mation. This allows the formulation of equations which lead to simplifications in
the stiffness tensor, either through the elimination of entries, or the establishment
of relations between them. This is the method shown in the following treatment.

A slightly different, alternative approach, used by Lekhnitskii [3], is to look at
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symmetry in terms of strain energy per unit volume,V̄. Using the tensor summa-
tion convention,̄V is shown in equation (1.15).

V̄ =
1
2

ci jkl σi j σkl (1.15)

Clearly, strain energy is independent of any particular coordinate system. If the
material is symmetric under a coordinate transformation, then the termsci jkl of the
stiffness tensor will also be invariant. The stressesσi j will transform to stresses
σ ′i j in the new coordinate system. Applying these observations to equation (1.15)
leads to the following result.

1
2

ci jkl σi j σkl =
1
2

ci jkl σ
′
i j σ

′
kl (1.16)

Given our earlier observations on the transformation of second order tensors (see
equation (1.13)), we can easily substitute for the termsσ ′i j equivalent expressions
in terms of the untransformed stresses, and the elements of the transformation
matrix βi j . Once this is done, coefficients for particular termsσ11, σ12, . . . are
equated and simplifications become apparent.

The field of crystallography is a large one, and it has developed a rigorous
way of classifying and identifying symmetry classes. I will not attempt a full
examination of material symmetry. I will, however, go so far as to include point
group diagrams for most of the symmetry classes discussed. On these diagrams,
points are marked using either crosses or circles. A cross indicates that a point
is above the plane of the page, a circle indicates a point below the page. Under
the transformations defining the symmetry class, all points shown on the diagram
must be equivalent. In the naming of the groups, a number such as 2 or 3 indicates
a 2 or 3 fold rotation axis.m indicates a plane of mirror symmetry. If we write,
for example, 2/m; this means that the plane of symmetry referred to bym is
perpendicular to the axis referred to by 2. 2mwould mean that the plane of mirror
symmetry was parallel with the 2-fold rotation axis. An overbar, indicates that an
inversion is applied (e.g.̄2 indicates a 2-fold axis with inversion,̄1 is a simple
inversion).

We will see that materials having different point groups may in fact be equiv-
alent in terms of their stiffness tensor symmetry requirements.

It should be noted that Nayfeh’s book [1] simplifies greatly the discussion of
symmetry. He gives only a single example of each class (equivalent to discussing
only one point group). These notes originally (and perhaps to some extent still)
reflect this simplification, though I am attempting to add more detail. Auld [2],
Fedorov [4], and various books on crystallography [5, 6, 7] provide more thorough
treatments of the area.
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1 1̄

Figure 1.1: Triclinic Symmetry Point Groups

1.3.1 Triclinic Symmetry

It is worth noting that it is possible to introduce an inversion center without in-
troducing any restrictions to the stiffness tensor. The transformation tensor for an
inversion center is given as:

βi j =

−1 0 0
0 −1 0
0 0 −1

 (1.17)

Now, since the stiffness tensor is even ordered (its order is 4), requiring iden-
tity under the application ofβi j to ci jkl introduces no restrictions on the terms of
ci jkl . Similarly, in later discussion, any transformation tensors which differ only
in terms of the application of an inversion center are equivalent in terms of their
effects on the stiffness tensor.

It should also be noted that triclinic materials (and indeed all materials) are, of
course, invariant under the identity operation.

1.3.2 Monoclinic Symmetry

Monoclinic materials are materials having, for example, one plane of mirror sym-
metry. Other examples can be seen in figure 1.19. Considering the mirror symme-
try case, let us say that this plane coincides with thex′1−x′2 plane. This symmetry
condition requires that the material be invariant under the transformationβi j de-
fined by equation (1.18).

βi j =

1 0 0
0 1 0
0 0 −1

 (1.18)
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2 m 2/m

Figure 1.2: Monoclinic Symmetry Point Groups

Consider the formation of the termc2312. Clearlyc2312= β2iβ3iβ1iβ2ic′i jkl . Now,
looking at equation (1.18), it is clear that the termsβi j = 0 for i 6= j. Thus we
getc2312= β22β33β11β22c′2312=−c′2312. However, we require thatc2312= c′2312,
which leads to the conclusionc′2312= 0. Other elements ofc′i jkl which vanish are
c′1123, c′2223, c′3323, c′1113, c′2213, c′3313andc′1312. These are all the unique terms with
an uneven number of 3’s in their subscript. With these 8 terms removed, we are
left with 13 unique coefficients (compared with 21 for the more general triclinic
material). The form of the reduced stiffness matrix for monoclinic materials is
shown in equation (1.19).

σ ′11
σ ′22
σ ′33
σ ′23
σ ′13
σ ′12

=


C′11 C′12 C′13 0 0 C′16
C′12 C′22 C′23 0 0 C′26
C′13 C′23 C′33 0 0 C′36
0 0 0 C′44 C′45 0
0 0 0 C′45 C′55 0

C′16 C′26 C′36 0 0 C′66




ε ′11
ε ′22
ε ′33
γ ′23
γ ′13
γ ′12

 (1.19)

1.3.3 Orthotropic Symmetry

If we introduce a second plane of symmetry, say thex′1− x′3 plane, we get an
orthotropic material. As well as being invariant under the transformation tensor
(1.18), this material is also invariant under the transformation tensor (1.20).

βi j =

1 0 0
0 −1 0
0 0 1

 (1.20)
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Unique elements ofc′i jkl which vanish under this invariance condition arec′1112,
c′2212, c′3312 andc′1323 (elements with even numbers of 2’s). These simplifications
leave us with 13−4 = 9 independent coefficients. Since we have two orthogonal
planes of symmetry, introducing a third plane will have no further effect on the
stiffness tensor2. The form of the reduced stiffness matrix for orthotropic mate-

2mm 222 mmm

Figure 1.3: Orthotropic Symmetry Point Groups

rials is shown in equation (1.21). The point diagrams of the symmetry classes
satisfied by this equation are shown in figure 1.3.

σ ′11
σ ′22
σ ′33
σ ′23
σ ′13
σ ′12

=


C′11 C′12 C′13 0 0 0
C′12 C′22 C′23 0 0 0
C′13 C′23 C′33 0 0 0
0 0 0 C′44 0 0
0 0 0 0 C′55 0
0 0 0 0 0 C′66




ε ′11
ε ′22
ε ′33
γ ′23
γ ′13
γ ′12

 (1.21)

1.3.4 Tetragonal Symmetry

In the next symmetry case, we introduce the concept of transformation by rotation.
For the case of a counterclockwise rotation of an angleφ about thex′3 axis, the

2 Nayfeh [1] incorrectly states that if we have two perpendicular planes of mirror symmetry,
then any plane normal to them must also be a plane of mirror symmetry. Working through the ele-
mentary calculations, we see that combining (1.18) and (1.20) does not produce the transformation
matrix of the third plane of symmetry, but differs from it by a factor of−1 (it is equivalent to a
two-fold rotation axis aligned along the intersection of the two mirror-planes). We have already
seen (§1.3.1) that an inversion imposes no extra conditions on the stiffness matrix. Thus, Nayfeh
is correct in ignoring the effect of a third plane of mirror symmetry on the stiffness tensor.
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4 4̄ 4/m

422 4mm 4̄2m

4/mmm

Figure 1.4: Tetragonal Symmetry Point Groups
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transformation matrixβi j is given as

βi j =

 cosφ sinφ 0
−sinφ cosφ 0

0 0 1

 . (1.22)

Fedorov [4] describes the tetragonal symmetry class. In this case, we say
that the material properties are invarient under rotations ofφ = π/2 about axisx′3.
These systems have 6 significant elastic moduli3 The form of the reduced stiffness
matrix for tetragonal materials is shown in equation (1.23).

σ ′11
σ ′22
σ ′33
σ ′23
σ ′13
σ ′12

=


C′11 C′12 C′13 0 0 0
C′12 C′11 C′13 0 0 0
C′13 C′13 C′33 0 0 0
0 0 0 C′44 0 0
0 0 0 0 C′44 0
0 0 0 0 0 C′66




ε ′11
ε ′22
ε ′33
γ ′23
γ ′13
γ ′12

 (1.23)

The matrix given in (1.23) is taken from Fedorov’s work [4], and applies to all
tetragonal materials. Auld [2] (and some Russian workers cited by Fedorov) di-
vide the tetragonal (and trigonal, see below) systems into subclasses with either 7
or 6 independent moduli. The classes with 6 moduli have the matrix as shown in
(1.23), while those with 7 have a matrix in the form of (1.24) below.

σ ′11
σ ′22
σ ′33
σ ′23
σ ′13
σ ′12

=


C′11 C′12 C′13 0 0 C′16
C′12 C′12 C′13 0 0 −C′16
C′13 C′13 C′33 0 0 0
0 0 0 C′44 0 0
0 0 0 0 C′44 0

C′16 −C′16 0 0 0 C′66




ε ′11
ε ′22
ε ′33
γ ′23
γ ′13
γ ′12

 (1.24)

The classess with 7 moduli are 4,4̄ and 4/m. Those with 6 are 4mm, 422,4̄2mand
4/mmm. Fedorov asserts that the distinction is artificial, and that correct choice
of axes reduces all tetragonal (and trigonal) systems to 6 independent significant

3 Fedorov quotes different numbers of independent elastic moduli to Nayfeh, and also to Auld.
For example, in the case of monoclinic crystal he gives the number of 12, as opposed to 13 in
Nayfeh’s work. As far as I understand, this discrepancy is because Fedorov uses the 13th number
to fix the orientation of the coordinate system. Thus, for the orthorhombic/orthotropic system,
Nayfeh and Fedorov agree on the number of 9, as the two perpendicular planes are sufficient to fix
the orientation of the coordinate system. I should look into this in more detail, and maybe browse
through a book on crystallography (Fedorov alludes to far more detail on symmetry classes than
Nayfeh does).
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moduli. It will be noted that the classes with the larger number of moduli are
those which inherently fix only one direction (principally the axis about which the
rotations occur), while the classes with 6 moduli are those which inherently fix all
coordinate directions (axis of rotation, and normal to a mirror plane, for example).
See also the footnote for a couple of notes. I will go through this in more detail in
the future. The point groups for all of these classes are shown in figure 1.4.

1.3.5 Trigonal Symmetry

Materials with trigonal symmetry have a trigonal axis, which we will assume to
coincide withx′3. This means that the material is invariant under rotations of
φ = 2π/3 about thex′3 axis. According to Fedorov [4], in this case there are
6 significant moduli (see footnote in§1.3.4). The form of the reduced stiffness
matrix for trigonal materials is shown in equation (1.25).

σ ′11
σ ′22
σ ′33
σ ′23
σ ′13
σ ′12

=


C′11 C′12 C′13 C′14 −C′25 0
C′12 C′11 C′13 −C′14 C′25 0
C′13 C′13 C′33 0 0 0
C′14 −C′14 0 C′44 0 C′25
−C′25 C′25 0 0 C′44 C′14

0 0 0 C′25 C′14
1
2(C′11−C′12)




ε ′11
ε ′22
ε ′33
γ ′23
γ ′13
γ ′12

 (1.25)

Fedorov shows that equation (1.25) may be simplified by correct choice of coor-
dinate system, to give the form:

σ ′11
σ ′22
σ ′33
σ ′23
σ ′13
σ ′12

=


C′11 C′12 C′13 C′14 0 0
C′12 C′11 C′13 −C′14 0 0
C′13 C′13 C′33 0 0 0
C′14 −C′14 0 C′44 0 0
0 0 0 0 C′44 C′14
0 0 0 0 C′14

1
2(C′11−C′12)




ε ′11
ε ′22
ε ′33
γ ′23
γ ′13
γ ′12

 (1.26)

As mentioned before in section 1.3.4, Fedorov [4] and Auld [2] differ on the
number of independent moduli. Fedorov asserts it is 6 for all trigonal classes.
Auld argues that it is 7 for classes 3 and3̄, which have the stiffness matrix as
shown in (1.25). Auld says that there are 6 significant constants for classes 32,
3m and3̄m. Similar arguments may be made as in the case of tetragonal systems
1.3.4. See also footnotes. More detail required on this topic. The point diagrams
for all classes are shown in figure 1.5.
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3 3̄ 32

3m 3̄m

Figure 1.5: Trigonal Symmetry Point Groups
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1.3.6 Transversely Isotropic Symmetry

To obtain properties for transversely isotropic materials, we can apply the rotation
transformation (1.22) to the properties for an orthotropic material (see section
1.3.3). It is possible to write out expressions for each of the terms in the new
stiffness tensorci jkl . Full details can be found in Nayfeh’s book [1], and can also
be found in the computer code accompanying this document. A couple of samples
are presented here:

c1111= c′1111cos4φ +c′2222sin4
φ +2(c′1122+2c′1212)sin2

φ cos2φ (1.27)

c2222= c′1111sin4
φ +c′2222cos4φ +2(c′1122+2c′1212)sin2

φ cos2φ (1.28)

c2212= (c′1111−c′1122−2c′1212)cosφ sin3
φ +(c′1122−c′2222+2c′1212)sinφ cos3φ

(1.29)

Clearly from (1.27) and (1.28), if we require the material properties to be invariant
for φ = π/2, it is necessary forc′1111 andc′2222 to be identical. The full set of
restrictions thus imposed are:

c′1111= c′2222

c′2233= c′1133

c′1313= c′2323

(1.30)

Further requiring invariance under general rotations about thex′3 axis, leads to
additional restrictions. Consider equation (1.29). Under the invariance condition,
we requirec2212= c′2212. However, for an orthotropic material,c′2212= 0. This
means that the right hand side of (1.29) equals zero. This, along with (1.30) gives
the relation:

c′1111−c′1122= 2c′1212. (1.31)

Thus, there are 9− 4 = 5 independent coefficients in the stiffness tensor. The
form of the reduced stiffness matrix for transversely isotropic materials is shown
in equation (1.32). It should be noted that this appears to be identical to the matrix
supplied by Fedorov [4] for the case of a hexagonal crystal. He forms the hexago-
nal case by noting that it is equivalent to the simultaneous presence of identically
direct twofold and threefold axes. He forms the matrixCi j for the hexagonal case
by combining the properties of these two cases (equations (1.19) and (1.25)). The
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6 6̄ 6/m

622 6mm 6̄m2

6/mmm

Figure 1.6: Hexagonal Symmetry Point Groups
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point groups for the hexagonal symmetry case are shown in figure 1.6.
σ ′11
σ ′22
σ ′33
σ ′23
σ ′13
σ ′12

=


C′11 C′12 C′13 0 0 0
C′12 C′11 C′13 0 0 0
C′13 C′13 C′33 0 0 0
0 0 0 C′55 0 0
0 0 0 0 C′55 0
0 0 0 0 0 1

2(C′11−C′12)




ε ′11
ε ′22
ε ′33
γ ′23
γ ′13
γ ′12

 (1.32)

1.3.7 Cubic Symmetry

To define cubic symmetry, we start from the orthotropic case (§1.3.3), and again
apply rotations, both by angleφ about thex′3 axis (as in§1.3.6) and by angleγ
about thex′2 axis. We require that the material is invariant for rotationsφ = π/2
andγ = π/2. This means that the coordinatesx′1, x′2 andx′3 are completely inter-
changeable. This reduces by 6 the number of independent stiffness coefficients
(compared with the orthotropic case) to give 9−6 = 3 independent coefficients.
The form of the reduced stiffness matrix for cubic isotropic materials is shown in
equation (1.33).

σ ′11
σ ′22
σ ′33
σ ′23
σ ′13
σ ′12

=


C′11 C′12 C′12 0 0 0
C′12 C′11 C′12 0 0 0
C′12 C′12 C′11 0 0 0
0 0 0 C′66 0 0
0 0 0 0 C′66 0
0 0 0 0 0 C′66




ε ′11
ε ′22
ε ′33
γ ′23
γ ′13
γ ′12

 (1.33)

1.3.8 Isotropic Symmetry

Finally, the greatest degree of symmetry possible is isotropic symmetry. In this
case, the material is invariant under rotation by arbitrary anglesγ andφ . In this
case, there are only two independent stiffness constants. The form of the reduced
stiffness matrix for cubic isotropic materials is shown in equation (1.34) (stress
and strain terms are omitted for clarity). Point group diagrams are superfluous for
this case as every point is equivalent to every other point.

C′11 C′12 C′12 0 0 0
C′12 C′11 C′12 0 0 0
C′12 C′12 C′11 0 0 0
0 0 0 1

2(C′11−C′12) 0 0
0 0 0 0 1

2(C′11−C′12) 0
0 0 0 0 0 1

2(C′11−C′12)

 (1.34)
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The two exisiting constants can be represented in various ways. One commonly
used form of elastic constants are the Lamé constants. These are defined in terms
of elements ofCi j as follows [2]:

λ = C12

µ = C44 =
1
2

(C11−C12)
(1.35)

Conversely, the terms of the tensorci jkl can be neatly expressed in terms of Lamé
constants and Dirac deltas [8]:

ci jkl = λδi j δkl + µ
(
δikδ jl +δil δ jk

)
(1.36)

In engineering work, another commonly used pair of elastic properties are Young’s
modulus and Poisson’s ratio. The definitions of Young’s modulus and Poisson’s
ratio, along with expressions for them in terms of elements ofCi j are given in
Equations (1.37) and (1.38) respectively. The directions used are of course arbi-
trary since any orthogonal coordinate system can be used equivalently.

E =
σ11

ε11
=C11−

2C2
12

C11+C12
(1.37)

ν =−ε33

ε11
=−ε22

ε11
=

1
C11/C12+1

(1.38)

1.4 Bulk Waves

1.4.1 Bulk Waves Background

In general, for wave propagation in a direction~n, three types of waves are possible.
These are associated with the directions of the three particle displacement vectors
~u(k) (k = 1,2,3). These can be referred to as having different polarisations. Pure
modes can be defined in different ways, but Nayfeh [1] and Auld [2] define them
as modes where either~u⊥ ~n or ~u ‖ ~n. Where~u⊥ ~n, we say that the mode is
longitudinal. Where~u ‖ ~n, we can say that the mode is shear. In cases where
the modes are not pure, they are described as quasi-longitudinal or quasi-shear,
depending on which they are closest to.

Combining the momentum equation (1.1) and the stress-strain relation (1.2)
and the strain-displacement relationship (1.4), gives the following result:

ρ
∂ 2ui

∂ t2 =
1
2

ci jkl
∂

∂x j

(
∂ul

∂xk
+

∂uk

∂xl

)
(1.39)
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By symmetry arguments (k and l are interchangeable) we can simplify (1.39) to
get

ρ
∂ 2ui

∂ t2 = ci jkl
∂ 2ul

∂xk∂x j
(1.40)

We look for solutions,ui of the following form, in terms ofζ the bulk wavenum-
ber,~U the displacement amplitude vector (which defines polarisation), and~n the
propagation direction unit vector:

ui = Uie
j(ζn jx j−ωt) (1.41)

Substituting (1.41) into (1.40), and introducingλi jkl = ci jkl /ρ, gives the follow-
ing:

ω
2Ui =

ci jkl

ρ
ζ

2nkn jUl ⇔ ω
2Ui = λi jkl ζ

2nkn jUl (1.42)

Now, we introduce the phase velocity,v, defined as follows:

v =
ω

ζ
(1.43)

Usingv, equation (1.42) can be rewritten as follows:(
λi jkl nkn j −v2

δil
)
Ul = 0

⇔
(
Λil −v2

δil
)
Ul = 0

(1.44)

whereΛil = λi jkl nkn j . Clearly (1.44) represents an eigenvalue problem, where the
phase velocitiesv are the eigenvalues, and theUl vectors (polarisation vectors)
are the eigenvectors. In general, there will be three phase velocities, accompanied
by three polarisation vectors. These phase velocities and polarisations define a
single (quasi)longitudinal and two (quasi)shear modes. Explicitly, the eigenvalue
problem is as followsΛ11−v2 Λ12 Λ13

Λ12 Λ22−v2 Λ23

Λ13 Λ23 Λ33−v2


U1

U2

U3

= 0 (1.45)

An important concept to introduce at this stage is theslowness curve. A slow-
ness curve is a plot of the inverse of velocity (units are therefore seconds/metre
or equivalent). Typically, a slowness curve is produced by choosing a plane in
the material of interest, and then calculating the different phase velocities for
a selection of propagation directions. Slowness is then plotted as a function of
propagation direction in a polar plot. Slowness curves feature in most texts deal-
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ing with wave propagation in solids. Slowness curves can be combined to obtain
a slowness surface, which would completely characterise the phase velocities of
the possible modes in a given material. However, there are obvious difficulties in
printing or displaying such surfaces.

Another concept which is introduced is theskew curve. This is a plot which
I have only seen in Nayfeh’s work [1]. As was mentioned earlier (page 20), pure
modes are defined as being modes which are either normal to or parallel with the
direction of propagation. Skew is a measure of how far any particular mode devi-
ates from this ideal. If the mode is pure, skew will be zero. For other modes, the
skew is the angle between the polarisation vector and the direction of propagation
(for quasi-longitudinal modes) or the normal to the direction of propagation (for
quasi-shear modes).

1.4.2 Computation of Slowness and Skew Curves Background

At this point, we are ready to calculate slowness curves for a wide range of mate-
rials. All that is required are the entries from the stiffness tensorci jkl , or equiva-
lently the entries of the reduced stiffness matrixCi j .

We map out the slowness data by considering planes parallel to thex3 axis
(which without loss of generality, can coincide with thex′3 axis). Given a set
of material propertiesc′i jkl , expressed in the coordinate system (x′1,x

′
2,x

′
3), we can

transform it toci jkl expressed in the coordinate system (x1,x2,x3) by rotating about
the x′3 axis. In this way, we can arrange that the coordinates of any direction of
propagation,~n are of the form

~n =


cosθ

0
sinθ

 where 0≤ θ ≤ 2π (1.46)

when expressed in the transformed coordinate system. Once the transformed stiff-
ness matrix or tensor is obtained, the angleθ is varied in the range 0≤ θ ≤ 2π,
giving different propagation direction vectors,~n. For each~n, Λi j from equation
(1.45) is obtained. The eigenvalues and eigenvectors ofΛi j are found. The entire
slowness surface can be determined by applying different rotations aboutx3 and
repeating the process.

An issue that caused me some difficulty when implementing this code was the
sorting of the modes (i.e. which eigenvector/eigenvalue pair corresponds to longi-
tudinal mode, which corresponds to the “fast shear” mode and which corresponds
to the “slow shear” mode). Sorting by phase velocity gives correct results in par-
ticular cases, but for some materials the slowness curves cross each other (we will
see this shortly). Nayfeh [1] indicates that the modes can be identified by looking
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at the dot and cross products of their eigenvectors with the propagation direction
~n. This immediately identifies the longitudinal mode, which will generally make
a relatively small angle with the propagation direction. The two remaining shear
modes can then be sorted by how close they come to being normal to the propa-
gation direction. For some cases this is sufficient to sort the modes. However for
other more complicated materials, this leads to “curve-jumping”. An alternative
tried was to sort the shear modes by how close they came to lying along thex2

axis (i.e. to being perpendicular to the plane containing thex3 axis and the prop-
agation directions. Again, this works for some materials, but at particular points
the modes swap over leading to discontinuities in the curves.

The solution I settled on when sorting the modes is as follows. For the first
propagation direction tested, take the dot product of each polarisation vector with
the propagation direction. The vector giving the largest number (smallest angle)
is designated as the quasi-longitudinal mode. Then take the dot product of the
remaining two vectors with the vector(0,1,0). The mode giving the largest dot-
product is designated as the first shear mode. The remaining mode is the second
shear mode. For subsequent propagation directions~n, classify the resulting eigen-
vectors by how close they come to the previous longitudinal or shear modes (again
using dot products). This works as long as each~n is relatively close to the previous
one (i.e. as long as the increments inθ are relatively small). In this way, the new
vector closest to our last longitudinal vector is the new longitudinal mode. The
new vector closest to the previous first shear mode vector is the new first shear
mode. The remaining vector is the new second shear mode.

1.4.3 Examples of Slowness and Skew Curves

In this section I will present some sample slowness and skew curves calculated
with the Python code I have written. Material properties used will also be pre-
sented here. The examples chosen are the same as the ones used by Nayfeh, so
that I could more easily verify their correctness.

Aluminium

Aluminium is an isotropic material (this is not true in all cases, for example rolled
aluminium can have directionality in material properties), and has very simple
slowness and skew curves. The propagation velocities are the same for all direc-
tions. Skew is zero for all directions (all modes are pure modes). Additionally,
the two shear modes present are degenerate (they have the same velocity). The
slowness curve is shown in figure 1.7. The material properties are shown in equa-
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tion 1.47. 
107.50 54.59 54.59 0.00 0.00 0.00
54.59 107.50 54.59 0.00 0.00 0.00
54.59 54.59 107.50 0.00 0.00 0.00
0.00 0.00 0.00 26.45 0.00 0.00
0.00 0.00 0.00 0.00 26.45 0.00
0.00 0.00 0.00 0.00 0.00 26.45

 (1.47)

Figure 1.7: Slowness Curve for Isotropic Aluminium
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InAs

InAs is a cubic material. Its reduced stiffness matrix is given below for coordinate
axes coinciding with cubic axes (i.e. in its simplest form).

83.29 45.26 45.26 0.0 0.0 0.0
45.26 83.29 45.26 0.0 0.0 0.0
45.26 45.26 83.29 0.0 0.0 0.0
0.0 0.0 0.0 39.59 0.0 0.0
0.0 0.0 0.0 0.0 39.59 0.0
0.0 0.0 0.0 0.0 0.0 39.59

 (1.48)

This gives the slowness and skew curves as shown below in figures 1.8 and 1.9.

Figure 1.8: Slowness Curve for InAs,φ = 0
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Figure 1.9: Skew Curve for InAs,φ = 0
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Rotating by an angle of 45 gives the reduced stiffness matrix shown in (1.49).
103.86 24.68 45.26 0.0 0.0 0.0
24.68 103.86 45.26 0.0 0.0 0.0
45.26 45.26 83.29 0.0 0.0 0.0
0.0 0.0 0.0 39.59 0.0 0.0
0.0 0.0 0.0 0.0 39.59 0.0
0.0 0.0 0.0 0.0 0.0 19.01

 (1.49)

Computation of the slowness and skew curves is straightforward. They are plotted
in figures 1.10 and 1.11 respectively.

Rotating by an angle of 30 degrees (relative to theoriginal orientation repre-
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Figure 1.10: Slowness Curve for InAs,φ = 45
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sented by (1.48)) gives the reduced stiffnes matrix of (1.50).
98.72 29.83 45.26 0.00 0.00 −8.91
29.83 98.72 45.26 0.00 0.00 8.91
45.26 45.26 83.29 0.00 0.00 0.00
0.00 0.00 0.00 39.59 0.00 0.00
0.00 0.00 0.00 0.00 39.59 0.00
−8.91 8.91 0.00 0.00 0.00 24.16

 (1.50)

The computed slowness and skew curves are shown in figures 1.12 and 1.13 re-
spectively.
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Figure 1.11: Skew Curve for InAs,φ = 45
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Graphite-Epoxy (65%-35%)

First, it should be noted that these curves differ significantly from those given by
Nayfeh. There is at least one error in the material properties provided by Nayfeh4

Graphite-epoxy slowness and skew curves are shown in figures 1.14 and 1.15

4 If I remember correctly, the Graphite-Epoxyφ = 30 data cannot be obtained from theφ = 0
data through transformation relations. Rather, it differs in a couple of terms by a factor of -1. The
material properties given here are taken directly from the ones provided by Nayfeh, errors and all,
though I may correct them in the future when I know which data are correct. I will soon begin
reproducing figures from Auld for further validation of this code.

Note on Tue Jun 18 15:50:35 IST 2002: I have done this for quartz, a trigonal material, in
§ 1.4.3.



mconry@acronymchile.com 29

Figure 1.12: Slowness Curve for InAs,φ = 30
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respectively. The matrix of stiffness constants is shown in equation (1.51).
155.43 3.72 3.72 0.00 0.00 0.00
3.72 16.34 4.96 0.00 0.00 0.00
3.72 4.96 16.34 0.00 0.00 0.00
0.00 0.00 0.00 3.37 0.00 0.00
0.00 0.00 0.00 0.00 7.48 0.00
0.00 0.00 0.00 0.00 0.00 7.48

 (1.51)

Corresponding slowness and skew curves for graphite-epoxy after a 30 degrees
rotation are shown in figures 1.16 and 1.17. The matrix of material properties
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Figure 1.13: Skew Curve for InAs,φ = 30
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following this transformation are show in (1.52).
95.46 28.93 4.03 0.00 0.00 44.67
28.93 25.91 4.65 0.00 0.00 15.56
4.03 4.65 16.34 0.00 0.00 0.54
0.00 0.00 0.00 4.40 −1.78 0.00
0.00 0.00 0.00 −1.78 6.45 0.00
44.67 15.56 0.54 0.00 0.00 32.68

 (1.52)
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Figure 1.14: Slowness Curve for Graphite Epoxy,φ = 0
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Quartz

First, it must be noted that in this discussion, the piezoelectric properties are ne-
glected. The material properties given by Auld are as follows

c11 = 8.674×1010N/m2 c12 = 0.699×1010N/m2

c33 = 10.72×1010N/m2 c13 = 0.699×1010N/m2

c44 = 5.794×1010N/m2 c14 =−1.791×1010N/m2

Since quartz is a trigonal material, the remainder of the stiffness matrix can be
determined by substituting into (1.26). Solving the eigenvalue problem for the
slowness and skew of the different polarisations gives the results shown in figures
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Figure 1.15: Skew Curve for Graphite Epoxy,φ = 0
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1.18 and 1.19. Applying a rotation ofπ/2 about theZ axis, gives the slowness
and skew curves shown in figures 1.20 and 1.21.

We now look at propagation in the plane perpendicular to theZ axis. This
means that we rotate the coordinates from the first system byπ/2 about theX
axis, or equivalently rotate the coordinates from the second system byπ/2 about
theY axis. The resulting slowness and skew curves are shown in figures 1.22 and
1.23.
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Figure 1.16: Slowness Curve for Graphite Epoxy,φ = 30
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Cadmium Sulfide

Piezoelectric properties are neglected in this case. The material properties given
by Auld are as follows

c11 = 9.07×1010N/m2 c12 = 5.81×1010N/m2

c33 = 9.38×1010N/m2 c13 = 5.10×1010N/m2

c44 = 1.504×1010N/m2

Since cadmium sulfide is a hexagonal material, the remainder of the stiffness ma-
trix can be determined by substituting into (1.32). Solving the eigenvalue problem
for the slowness and skew of the different polarisations gives the results shown in
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Figure 1.17: Skew Curve for Graphite Epoxy,φ = 30
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figures 1.24 and 1.25. This is for propagation in the plane normal to the axis of
symmetry. Rotating the coordinate system byπ/2 and again solving the eigen-
value problem gives the results for a plane parallel to the axis of symmetry. These
results are shown in figures 1.26 and 1.27.
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Figure 1.18: Slowness Curve for Quartz,φ = 0, (X−Z Plane)
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Figure 1.19: Skew Curve for Quartz,φ = 0, (X−Z Plane)
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Figure 1.20: Slowness Curve for Quartz,φ = 90, (Y−Z Plane)
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Figure 1.21: Skew Curve for Quartz,φ = 90, (Y−Z Plane)
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Figure 1.22: Slowness Curve for Quartz,φ = 90, (X−Y Plane)
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Figure 1.23: Skew Curve for Quartz,φ = 90, (X−Y Plane)
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Figure 1.24: Slowness Curve for CdS,φ = 0, (X−Y Plane)
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Figure 1.25: Skew Curve for CdS,φ = 0, (X−Y Plane)
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Figure 1.26: Slowness Curve for CdS,φ = 90, (X−Z Plane)
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Figure 1.27: Skew Curve for CdS,φ = 90, (X−Z Plane)
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Chapter 2

Guided Waves in Plates

2.1 Introduction

My aim in this section of the document is to summarise some information on elas-
tic wave propagation in plates. Such waves, when propagating in infinite plates
of isotropic homogeneous linearly elastic media, are known as Lamb waves. In
this document, I will also discuss wave propagation in anisotropic and inhomo-
geneous (layered) media. Although strictly speaking such guided waves are not
Lamb waves, I will use the term to describe such propagating guided modes. To
follow this discussion, it is important to have a basic understanding of propagating
bulk waves in isotropic and anisotropic media.

2.2 Lamb Waves

Lamb waves are defined as the waves propagating in a plate of isotropic material,
where the particle displacements are polarised in a plane parallel to both a normal
to the plate’s free surfaces, and to the direction of propagation (we would call
this plane thesagittal plane, illustrated in Fig. 2.1). A second form of propagat-
ing wave which can propagate in a free plate of isotropic material is the shear-
horizontal (orSH) wave, where particle displacements arenormal both to the
direction of propagation and to the plate normal. The equations describing the
behaviour of Lamb waves are obtained by starting with the basic equations gov-
erning an elastic solid, as described in section 1.1, and then applying boundary
conditions corresponding to the free surfaces of the plate. This was first studied
by Lord-Rayleigh [9], and by Lamb [10], though a full study of the details of
dispersion behaviour was not completed until decades later. A seminal and illu-
minating discussion of the details of Lamb wave propagation is to be found in
work by Mindlin [11].

45
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Figure 2.1: Schematic

A brief derivation of the Lamb wave dispersion relations will be presented
here. This will be facilitated by the use of a dimensionless notation, in particular
a dimensionless frequency. The dispersion relations obtained will be solved in
order to provide dispersion data for the materials which will be modelled later.

2.2.1 Lamb Waves in Aluminium Plate

The starting point in this section is the dynamic equation for a linear elastic
solid, Equation (1.1). A more convenient form to begin with is shown in Equa-
tion (2.1) [12], which uses the Laḿe constants mentioned in Section 1.3.8.

ρ
∂ 2ui

∂ t2 = (λ + µ)
∂θ

∂xi
+ µ∇2ui (2.1)

θ represents the diveregence or dilation, and is defined in Equation (2.2) where the
summation has been written explicitly for clarity. If the wave is decomposed into
rotational and irrotational potentials, then the dilation represents the irrotational
component.

θ =
∂u1

∂x1
+

∂u2

∂x2
+

∂u3

∂x3
(2.2)

Before going any further, it is useful at this point to introduce a dimensionless
notation which allows some useful simplification of the current analysis. If cer-
tain simplifications are made regarding material properties, then a dimensionless
treatment of the equations described so far makes it possible to express the equa-
tions in a more compact form as shown below. First, the simplification is made
that Poisson’s ratio is equal to a third,ν = 1/3. This is approximately the case
for aluminium. This simplification is expressed in terms of Lamé’s constants in
equation (2.3).

λ = 2µ (2.3)
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The removal of dimensionality is done in the following way. Lengths (such asxi

andui) are expressed in terms of the plate half-thickness,d (see Fig. 2.1). Time
is scaled by a time scaling factor,η , which will be defined in terms of bulk wave
speeds in the material and the half-thickness of the plate.η is thus a function
of the material properties of the plate, as well as the scale of the plate. The new
dimensionless quantities are distinguished from their dimensioned counterparts
by the use of upper case. Equation (2.4) illustrates the transformation.

X1 =
x1

d
, X3 =

x3

d
, T = tη , c̄(t,l) =

c(t,l)

ηd
, Ω =

ω

η
(2.4)

Note that in Equation (2.4),ct andcl are the transverse (shear) and longitudinal
bulk wavespeeds. Confusion with earlier termsci jkl from the stiffness tensor is
avoided since the meaning should be clear in context, and also due to the number
of subscripts. If we now express Equation (2.1) using this new notation, and
applying Equation (2.3) we get the expression shown in Equation (2.5).

ρd2η2

µ

∂ 2Ui

∂T2 = 3
∂θ

∂Xi
+∇2Ui (2.5)

We have not yet defined the time scaling factorη , so for convenience we will pick
it such that

η
2 =

µ

ρd2 ≡
c2

t

d2 ⇔ ρd2
η

2 = µ (2.6)

Thus, Equation (2.5) simplifies to give

∂ 2Ui

∂T2 = 3
∂θ

∂Xi
+∇2Ui . (2.7)

Since the dependence on time is of the formeiΩT , Equation (2.7) is equivalent to
Equation (2.8). (

∇2 +Ω2)Ui =−3
∂θ

∂Xi
(2.8)

If for each i = 1,2,3, (2.8) is differentiated with respect toXi , and the result-
ing three equations are summed, we obtain the expression inθ shown in Equa-
tion (2.9). (

∇2 +
Ω2

4

)
θ = 0 (2.9)

A solution of Equation (2.8) is given by

Ui =− 4
Ω2

∂θ

∂Xi
+αi (2.10)
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The complementary solution termsαi satisfy the relations(
∇2 +Ω2)

αi = 0 (2.11)

∂α1

∂X1
+

∂α2

∂X2
+

∂α3

∂X3
= 0 (2.12)

αi is expressed in terms of a potentialχ

α1 =
∂ χ

∂X3
and α3 =

−∂ χ

∂X1
(2.13)

Whereχ is a function ofX1 andX3 which satisfies(
∇2 +Ω2)

χ = 0 (2.14)

The solutions for the two potentialsχ andθ are respectively:

χ = (AsinhSX3 +BcoshSX3)eiFX1−iΩT (2.15)

θ = (CcoshQX3 +DsinhQX3)eiFX1−iΩT (2.16)

where

Q2 = F2−Ω2/4 (2.17)

S2 = F2−Ω2 (2.18)

Finally, the dimensionless displacementsU1 andU2 can be expressed in terms of
the potentialsφ1 andχ as follows:

U1 =
−∂φ

∂X1
+

∂ χ

∂X3
and U3 =

−∂φ

∂X3
+
−∂ χ

∂X1
(2.19)

2.2.2 Boundary Conditions

Up to this point, no mention has been made of boundary conditions, or of the
geometry of the elastic space being studied. Everything mentioned in the previ-
ous discussion is valid for any isotropic linear-elastic solid. The only restriction
introduced so far has been to limit our study to plane waves, and to align our co-
ordinate system such that thex1 axis points in the direction of propagation. The
waves which we have defined are basic longitudinal and shear waves, which are
fundamentally characterised in equations (2.9) and (2.14) respectively.

The boundary conditions which must be satisfied by the waves in the plate are

1φ is formed by absorbing the 4/Ω2 in Equation (2.10) into theθ term.
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the result of the traction free condition on the top and bottom surfaces of the plate.

σ33 = 0

σ13 = σ31 = 0

}
x3 =±d⇐⇒ X3 =±1 (2.20)

These boundary conditions can be expanded using the constitutive equation of an
isotropic material (1.34), and the definitions of the Lamé constants (1.35) to give
the expressions in Equations (2.21) and (2.22) (again, forX3 =±1).

λ

(
∂U1

∂X1
+

∂U2

∂X2
+

∂U3

∂X3

)
+2µ

∂U3

∂X3
= 0 (2.21)

µ

(
∂U1

∂X3
+

∂U3

∂X1

)
= 0 (2.22)

We have already, in Equation (2.19), expressed the displacementsU1 andU3 in
terms of potentialsφ andχ. Also, in Equations (2.15) and (2.16), these potentials
have been expressed in terms of the coordinateX3 and constants. Substituting
from these expressions into the shear stress boundary condition (2.22), and ignor-
ing theµ term, gives the following condition:

∂ 2χ

∂X2
3

− 2∂ 2φ

∂X3∂X1
− ∂ 2χ

∂X2
1

= 0 for X3 =±1 (2.23)

Then substitute for the potentials from Equations (2.15) and (2.16), the following
expressions are obtained forX =±1 respectively (common expiFX1− iΩT terms
omitted here and in subsequent expressions for neatness).(

F2 +S2)(AsinhS+BcoshS)−2iFQ(CsinhQ+DcoshQ) = 0 (2.24)(
F2 +S2)(−AsinhS+BcoshS)−2iFQ(−CsinhQ+DcoshQ) = 0 (2.25)

Recalling Equation (2.3), the normal stress condition of Equation (2.21) gives the
following result:

−2∂ 2φ

∂X2
3

− ∂ 2χ

∂X3∂X1
+

∂ 2φ

∂X2
1

= 0 for X3 =±1 (2.26)

And when the expressions for the potentialsφ andχ from (2.15) and (2.16) have
been substituted in, the following expressions are obtained forX = ±1 respec-
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tively.(
F2 +S2)(CcoshQ+DsinhQ)+2iFS(AcoshS+BsinhS) = 0 (2.27)(
F2 +S2)(CcoshQ−DsinhQ)+2iFS(AcoshS−BsinhS) = 0 (2.28)

It should be noted that it is possible to separate the potentialsχ andφ (and
hence displacements and stresses) into symmetric and non symmetric wave com-
ponents. This occurs naturally in each pair of boundary condition equations above,
which can be added or subtracted to give the boundary conditions for symmetric
or asymmetric waves. These separated boundary conditions are shown in Equa-
tions (2.29) and (2.30).(

F2 +S2)AsinhS−2iFQCsinhQ = 0

2iFSAcoshS+
(
F2 +S2)CcoshQ = 0

(2.29)(
F2 +S2)BcoshS−2iFQDcoshQ = 0

2iFSBsinhS+
(
F2 +S2)DsinhQ = 0

(2.30)

In the rotational potentialχ, the symmetric wave component is given by the
AsinhS term. This means that rotation is zero on the plate centre-line, and is
of opposite sign in the upper and lower halves of the plate. The effect of this is
that the contribution to displacement of the potential is symmetric. The symmet-
ric component of the dilational potential,φ is given by theCcoshQ term. The
remaining terms, which use the constantsB andD relate to the asymmetric part
of the propagating wave. By separating the wave into symmetric and asymmetric
components, the two parts of the propagating wave can be examined individually.

Solutions to Equations (2.29) and (2.30) will exist where the corresponding
determinants go to zero. This leads to two characteristic equations, for symmetric
and asymmetric waves respectively:

4F2QS

(F2 +S2)2 =
tanhS
tanhQ

. . . symmetric (2.31)

4F2QS

(F2 +S2)2 =
tanhQ
tanhS

. . . asymmetric (2.32)

These equations can be solved to find the possible wavelengths (equivalently wave
numbers or wave speeds) at any particular frequency.

Using, Equations (2.29) and (2.30), constantsC andD can be expressed in
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terms ofA andB respectively. Rewritingχ andφ in this way gives:

χ = AsinhSX3 +BcoshSX3 (2.33)

φ =
A(F2 +S2)sinhS

2iFQsinhQ
coshQX3 +

B(F2 +S2)coshS
2iFQcoshQ

sinhQX3 (2.34)

This allows final expressions for the dimensionless displacements and the stresses
to be formulated. These expressions are shown in Equations (2.35) to (2.44).

U1,symm= A

(
−(F2 +S2)sinhS

2QsinhQ
coshQX3 +ScoshSX3

)
(2.35)

U3,symm= iA

(
(F2 +S2)sinhS

2F sinhQ
sinhQX3−F sinhSX3

)
(2.36)

U1,asymm= B

(
−(F2 +S2)coshS

2QcoshQ
sinhQX3 +SsinhSX3

)
(2.37)

U3,asymm= iB

(
(F2 +S2)coshS

2F coshQ
coshQX3−F coshSX3

)
(2.38)

σ13,symm= µA
(
F2 +S2)[−sinhS

sinhQ
sinhQX3 +sinhSX3

]
(2.39)

σ33,symm= i2µA

[(
F2 +S2

)2
4QF

sinhS
sinhQ

coshQX3−FScoshSX3

]
(2.40)

σ11,symm= iµA

[(
F2 +S2) sinhS

sinhQ
Q2−2F2

QF
coshQX3 +2SFcoshSX3

]
(2.41)

σ13,asymm= µB
(
F2 +S2)[−coshS

coshQ
coshQX3 +coshSX3

]
(2.42)

σ33,asymm= i2µB

[(
F2 +S2

)2
4QF

coshS
coshQ

sinhQX3−FSsinhSX3

]
(2.43)

σ11,symm= iµB

[(
F2 +S2) coshS

coshQ
Q2−2F2

QF
sinhQX3 +2SFsinhSX3

]
(2.44)
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2.3 Isotropic Dispersion

2.3.1 Introduction

To characterise the vibration of an aluminium plate at any given frequency, it is
necessary to solve the frequency Equations (2.31) and (2.32). In much of the cur-
rent analysis, we will restrict ourselves to looking at symmetric vibrations of rel-
atively low frequency (Ω≤

√
2). At such frequencies, there are only two possible

modes of vibration, one symmetric and one antisymmetric (the S0 and A0 modes),
and as said before, for now we will restrict ourselves to the former case.

2.3.2 Preliminaries

In this section, the basic equations will be rearranged into forms more suitable
for analysis. This is done in a similar fashion to that used by Lamb [10]. The
preferable dimensionless notation will be used, with the inherent assumption that
the Laḿe constants are related asλ = 2µ (true for Aluminium). For the sake of
clarity, the earlier expressions from Equations (2.17) and (2.18) are repeated here:

Q2 = F2−Ω2/4 and S2 = F2−Ω2 (2.45)

Following Lamb [10], we introduce a termm such that:

m=
S
Q

(2.46)

Only real values ofF andΩ will be considered2. F can be easily expressed in
terms ofQ andS, and then equivalently in terms ofQ andm, as follows:

F2 =
4Q2−S2

3
=

4−m2

3
Q2 (2.47)

The dimensionless frequency equation for symmetric vibrations, given by (2.31)
earlier in the analysis is repeated here. It has been rewritten usingmQ in place of
Sand substituting forF from (2.47), and then simplified algebraically:

tanhmQ
tanhQ

=
3m(4−m2)
(2+m2)2 (2.48)

2Imaginary values of wavenumber correspond to waves that decay exponentially in thex1 di-
rection. Similarly imaginaryΩ corresponds to waves decaying exponentially in time
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For antisymmetric vibration, the form of the characteristic equation is only slightly
different and one of the fractions is inverted:

tanhQ
tanhmQ

=
3m(4−m2)
(2+m2)2 (2.49)

Using (2.45) and (2.47),Ω can be expressed purely in terms ofmandq as follows:

Ω2 = F2−m2Q2 =
4−4m2

3
Q2 (2.50)

Turning to the definition for dimensionless wave speed in the solid in equation (2.4),
and using the connection between wavenumber, frequency and wavespeed, andF
andΩ in terms ofm, it is possible to writeC purely as a function ofm:

c̄2 =
(

c
ct

)2

=
(

Ω
F

)2

=
(

4−4m2

4−m2

)
(2.51)

If m is allowed to take imaginary values, it is possible to obtain the velocities
over a different portion of the frequency speed curve. This corresponds to phase
velocities greater than the transverse wave velocityct , but still lower than the
longitudinal velocity. It is easier to handle the imaginarym if by introducing a
new termn defined as

m= in (2.52)

Using (2.52), the characteristic equations (2.48) and (2.49), along with the expres-
sions forF2 (2.47),Ω2 (2.50) and ¯c2 (2.51) can be rewritten respectively as:

tannQ
tanhQ

=
3n(4+n2)
(2−n2)2

(Symmetric)
(2.53)

tanhQ
tannQ

=
−3n(4+n2)

(2−n2)2
(Anti-symmetric)

(2.54)

F2 =
4+n2

3
Q2 (2.55)

Ω2 =
4+4n2

3
Q2 (2.56)

c̄2 =
4+4n2

4+n2 (2.57)

Here, the symmetric and anti-symmetric characteristic equations differ not only
by the inversion of the left hand side fraction, but also in the sign of the right hand
side. This is an effect of the cancellation of the imaginaryi terms.
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As will be seen shortly, most modes have velocities in excess of the longi-
tudinal velocitycl for some frequencies. In this region,S andQ both become
complex. To make matters clearer, the imaginary factori will be written beside
the termQ′, which is real valued.S is then written asimQ′, mbeing a real number
once more. Applying this to the relations already presented in Equations (2.48),
(2.49), (2.50) and (2.51), gives the following expressions:

tanmQ
tanQ

=
3m(4−m2)
(2+m2)2

(Symmetric)
(2.58)

tanQ
tanmQ

=
3m(4−m2)
(2+m2)2

(Anti-symmetric)
(2.59)

Ω2 =−4−4m2

3
Q2 (2.60)

F2 =
4−m2

3
Q2 (2.61)

c̄2 =
4−4m2

4−m2 (2.62)

2.3.3 Detailed Calculation of Dispersion Curves

In this section, the dispersion curves are numerically solved for a larger number
of points allowing a large portion of the dispersion diagram to be plotted. De-
pending on the wavenumber in a given region of the diagram, and on whether we
want to characterise symmetric or antisymmetric waves, the frequency equations
(2.48, 2.49, 2.53, 2.54, 2.58, 2.59) are solved for a given range of values ofmand
n to find corresponding values ofQ. Knowledge of the values ofm (or n) and
Q allows us to compute the values ofΩ, c̄ andF through the appropriate equa-
tions, which have all been mentioned in Section 2.3.2. The dispersion curves were
finally calculated using a program written in Python with the Numerical Python
extensions [13]. Plotting has been done using Gnuplot. For notes on plotting of
dispersion curves, see Section 2.4.3. The final dispersion curve plotted is shown in
Fig. 2.2. The variation of wavelength as a function of frequency for the S0 mode
is shown in Fig. 2.3. It should be noted from Fig. 2.3 how long the S0 wavelength
becomes for smallΩ (tending to infinity asΩ goes to 0). Another point to note is
how flat the S0 dispersion curve in Fig. (2.2) is for 0≤Ω≤

√
2. This means that

for this range of frequencies, the wave is almost non-dispersive. As will be seen
later, the dispersion curves shown here for an isotropic plate are very similar to
those obtained for a transversely isotropic composite plate in its plane of isotropy
(see Section 2.5 for comparison).
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Figure 2.2: Velocity/frequency dispersion plot for aluminium. Solid lines are
symmetric modes, dashed lines are antisymmetric modes.

2.4 Anisotropic and Inhomogeneous Plates

In this chapter, horizontal defects in anisotropic plates will be discussed. The elas-
tic properties of the plates will be chosen to represent a carbon-fibre reinforced
epoxy material. Horizontal defects, i.e. delaminations, are quite commonly found
in these materials. Often these occur in the manufacturing process as such ma-
terials are typically fabricated from multiple layers. Additionally, this layered
construction means that when subjected to damage, it is common for failure to
occur at the interfaces between layers.

Four laminated plate models are used. Two of these correspond to unidirec-
tional composite plates. In such plates, the reinforcing fibres are all aligned in
the same direction. This produces a material which is transversely isotropic. The
bulk wave properties of this material have been mentioned already in Section??.
In such a material, propagation of plate waves will be considered for two propa-
gation directions: normal to the fibre direction and parallel to the fibre direction.
It will also be assumed that the fibre direction is parallel to the free surfaces of the
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plate. Such a plate is highly anisotropic. Often other material properties are re-
quired, and in such a case the direction of fibre orientation is varied from layer to
layer. One such plate will be considered here, and the layers will be offset by 90◦

from each other. This arrangement leads to a somewhat more uniform distribution
of stiffness in the in-plane directions, while the plate will be substantially less stiff
in the out of plane direction. Such a plate is referred to as a cross-ply laminate.
Wave propagation and interaction with defects will be considered in such a plate
for two propagation directions.

2.4.1 Transverse Isotropy

Since transversely isotropic media are very common in engineering applications,
they will here be given a brief examination. It was seen earlier in Section??
that for propagation normal to the direction of fibres, the material behaves exactly
as an isotropic material would. Velocities of the shear and longitudinal waves
are independent of propagation direction in this plane, and the modes are always
pure modes. For propagation in an arbitrary direction, things are more difficult,
however for propagation in a plane parallel with the fibre direction, some simplifi-
cations occur. In particular, when looking at plate modes in this case, it is possible
to consider only one shear (a quasiSV mode) and one longitudinal mode. The
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remaining shear mode decouples and propagates in the plate as aSH mode.
Notwithstanding this simplifications, there are significant complications when

compared with the isotropic case. In an isotropic material, the phase velocities of
the fundamental component modes were independent of their propagation direc-
tion. For the anisotropic material, these velocities depend strongly on the direction
of propagation, as can be seen in Fig. 2.6. Nayfeh [1] presents an approach to this
problem (also seen in [14, 15, 16]), and this will be used here, specialised to the
particular case of propagation polarised in a plane of symmetry of a material with
at least orthotropic symmetry. Propagation in any of the planes of symmetry of a
composite transversely isotropic plate would meet these criteria.

Propagation will be assumed to be in thex1−x3 plane, and boundaries will be
oriented parallel to thex1−x2 plane. This means that the wavenumber vector can
be conveniently expressed in the form:

ζ


n1

n2

n3

= ζn1


1
0
α

= k


1
0
α

 (2.63)

In Equation (2.63),α is the ratio ofn3/n1 while k is the wavenumber in thex1

direction. Using these specific material properties and the restricted vectorn
in the Christoffel equation as expressed in Equation (1.45) leads to a simplified
Christoffel equation as shown below3.A11−ρv2 0 A13

0 A22−ρv2 0
A13 0 A33−ρv2


ū1

ū2

ū3

= 0 (2.64)

Equation (2.64) has one obvious solution, given byA22−ρv2 = 0. If the termA22

is expanded, and the material property restrictions of Equation (1.32) are applied
then the following expression results (written in terms of stiffnessesci jkl ):

A22 = (c2112n1n1 +c2222n2n2 +c2332n3n3) (2.65)

Recalling Equation (2.63), and substituting forA22 in the relevant factor of the

3It is not necessary to pursue the detailed calculations to see how the simplifications arise.
ConsiderA12 By definition,A12 = c1 jk2n jnk, which is a sum of nine terms. Because of the restric-
tions on the stiffness tensor, the only two values ofc1 jk2 which are nonzero are forj = 1,k = 2 and
for j = 2,k = 1 (corresponding toC12 andC66 in reduced notation). However, sincen2 = 0, the
corresponding terms inA12 go to zero. The same material restrictions apply to the nonzero terms
A11,A22,A33,A13, but these do not (all) coincide with the zero wavenumber component.
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eigenvalue problem gives the result (now using reduced notation):

ρv2 = n2
1(C66+α

2C44) (2.66)

This describes an ellipse, and corresponds to the elliptical slowness curve in
Fig. 2.6.

For the current discussion, the remaining part of the eigenvalue equation is of
more interest, as it describes the (quasi)P andSV modes which will be compo-
nents of Lamb waves. The remaining nonzeroAi j terms in Equation (2.64) are:

A11 = n2
1(C11+α

2C55)

A33 = n2
1(C55+α

2C33)

A13 = n2
1α(C13+C55)

(2.67)

It should be noted that all terms contain a common factorn1. If this is divided
out, then theρv2 terms divided byn1 becomeρc2, wherec = ω/k is the phase
velocity projected onto thex1 axis. Using this, and substituting for theA terms into
the remaining factors of the eigenvalue equation leads to the subsidiary eigenvalue
equation: (

C11+α2C55−ρc2 α(C13+C55)
α(C13+C55) C55+α2C33−ρc2

){
ū1

ū3

}
= 0 (2.68)

At this point, the rationale for the introduction ofα is clear. For a given phase
velocity c in thex1 direction, values of alpha can be found corresponding to the
bulk modes with this property. In fact, Equation (2.68) results in a quadratic
equation4 in terms ofα2 which is shown in Equation (2.69).

Aα
4 +Bα

2 +C = 0

where

A = C33C55

B = (C11−ρc2)C33+(C55−ρc2)C55− (C13+C55)2

C = (C11−ρc2)(C55−ρc2)

(2.69)

Thus, the values ofα appear in matching±α pairs corresponding to upward
and downward travelling waves. These four modes will be denoted by an index
q = 1,2,3,4, and the values ofα will satisfy α2 = −α1 andα4 = −α3. At this

4Note that this is equivalent to Equations (5.29-5.30) from Nayfeh [1], but with an error cor-
rected in the expression forB.
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point, the dynamic equations governing bulk waves in a transversely isotropic
medium have been rearranged in a form that is convenient for finding bulk modes
with a particular phase velocity in thex1 direction. Introducing free surfaces and
applying traction free boundary conditions is the next step required to define Lamb
waves and calculate dispersion curves. This requires expressions for the stresses
σ13 andσ33 (the σ23 = 0 boundary condition is satisfied by theSH plate-mode
corresponding to the first eigenvalue discussed).

The form of the stress strain relationship applicable to transversely isotropic
materials has already been presented in Equation (1.32). Selecting the stress com-
ponents of interest, substituting for strain in terms of displacement from Equa-
tion (1.4), and recalling that there is no dependence on thex2 direction, gives the
following expressions:

σ33 = C13
∂u1

∂x1
+C33

∂u3

∂x3
(2.70)

σ13 = C55

(
∂u3

∂x1
+

∂u1

∂x3

)
(2.71)

The displacement componentsui are the sum of the contributions from the four
partial waves mentioned already. It is useful to introduce a termw, which is the
ratio ū3/ū1 and which can be expressed from Equation (2.68) for modeq as

wq =
ū3q

ū1q
=

ρc2−C11−α2
qC55

αq(C13+C55)
(2.72)

The stresses in Equations (2.70) and (2.71) can then be rewritten

σ33 =
4

∑
q=1

(C13+αqC33wq)ikū1qeik(x1+αqx3−ct)

=
4

∑
q=1

D3qikū1qeik(x1+αqx3−ct)

(2.73)

σ13 =
4

∑
q=1

C55
(
wq +αq

)
ikū1qeik(x1+αqx3−ct)

=
4

∑
q=1

D1qikū1qeik(x1+αqx3−ct)

(2.74)

Each stress is a summation of four components. These two stresses must each go
to zero at the top and bottom surfaces of the plate (x3 = ±d). These conditions



mconry@acronymchile.com 60

can be neatly expressed in a matrix form, as follows:

ik


D11E1 D12E2 D13E3 D14E4

D31E1 D32E2 D33E3 D34E4

D11E
−1
1 D12E

−1
2 D13E

−1
3 D14E

−1
4

D31E
−1
1 D32E

−1
2 D33E

−1
3 D34E

−1
4




ū11

ū12

ū13

ū14

eik(x1−ct) =


0
0
0
0

 (2.75)

WhereEq = eikαqd. TheDi j terms are given in Equation (2.76).

D1m = C55(wm+αm)
D3m = C13+αmwmC33

(2.76)

Setting the determinant of the 4×4 matrix in Equation (2.75) equal to zero gives
the characteristic equation governing (quasi) Lamb waves propagating in a plane
of symmetry of a transversely isotropic material. In fact, it is possible to further
simplify the characteristic equation by a sequence of matrix manipulations5 to ar-
rive at the characteristic equation below, where the determinant has been separated
into two sub-determinants: ∣∣∣∣∣∣∣∣

iD11S1 iD13S3 0 0
iD31C1 iD33C3 0 0

0 0 D11C1 D13C3

0 0 D31S1 D33S3

∣∣∣∣∣∣∣∣= 0

WhereS1 = sin(α1k) = sin(α1ω/c) andC1 = cos(α1k) = cos(α1ω/c)

(2.77)

In Equation 2.77,S1 When expanded, these sub-determinants bear a strong re-
semblance to the characteristic equations already obtained for isotropic materials.
Application of the additional restrictions on the material properties of isotropic
materials shows that for this case, both sets of expressions are equivalent. An ex-
ample calculation for this class of material is presented in Section 2.6 along with
dispersion curves.

2.4.2 Stratified Media

Quite separate to the issue of anisotropic, but homogeneous, material properties is
the subject of layered media. The individual layers may be themselves anisotropic,
or they may be composed of different isotropic materials. In a sense, the discus-
sion in this chapter has concerned layered media since Section 2.2 when Lamb
waves were introduced. In that case the problem addressed consisted of a three

5Details of these manipulations for a more general 6×6 matrix have been presented by Nayfeh
[1], the procedure used here is similar.
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layer system: an isotropic elastic layer sandwiched by two infinite layers of vac-
uum. More generally, the discussion of guided waves in layered media concerns
layered plates, embedded in infinite layers of arbitrary material (which may be
vacuum, fluid or solid).

The area of wave propagation in layered media has received significant at-
tention, originally from the geophysical community who sought to model wave
propagation through the strata of the Earth’s crust, but more recently from those
interested in the field of nondestructive evaluation. Various approaches have been
used, some of which will be mentioned here.

In some cases, one particular layer may be very dominant. An example of
this would be where a thin coating or cladding has been added to a plate. In such
cases, researchers have found it useful to model the composite structure by simply
modifying the boundary conditions to account for the presence of the coating [17,
18]. A similar method can be used to model the presence of a thin interface layer
between two much thicker layers by using appropriate interface conditions [19].

In other cases, it has been necessary to explicitly account in detail for all layers
present in a stratified material. The most commonly used technique is known as
the transfer matrix method, which was first developed for elastic media by Thom-
son [20] and Haskell [21].

The principle of the transfer matrix is relatively simple, even in the anisotropic
case, although the implementation can be very difficult. In broadest terms, a 6×6
matrix is formed, relating the stress and displacement boundary conditions at the
top of a layer to those at its bottom. The matrices for multiple layers are then com-
bined based on the assumption of continuity at their interfaces. This process leads
to the formation of an overall 6×6 matrix which relates the boundary conditions
at the top of the multilayered medium to those at the bottom.

A six dimensional stress displacement field vector is used,s(x3), which (in the
general case) contains the three displacement componentsui and the three stress
components acting on the interface surfaceσi3.

s(x3) = (u1,u2,u3,σ13,σ23,σ33)
T =

(
u
σ

)
(2.78)

s(x3) is continuous across the interfaces between the layers. This means that for
two layersm andm+ 1, with field vectorssm andsm+1 respectively, and with
their interface at positionx3 = zm, the following must hold:

sm+1(zm) = sm(zm) (2.79)

It is necessary to relate the field vector on the bottom of a layer to that on the top.
The displacementu can be decomposed into the quasi longitudinal and transverse
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waves seen in Section 1.4. Six components are used, three propagating in the
positivex3 direction, and three propagating in the negativex3 direction. These
six components will be denoted by the indexq = 1,2, . . . ,6. We will also use
an indexm, denoting the layer number. These components, for a layerm can
thus be summed to give the total displacement vector for a monochromatic plane
waveum.

um =

(
6

∑
q=1

ūqei(nq·x−ωt)
)m

(2.80)

The vectors ¯uq are the polarisation vectors of the relevant components.nq is the
wavenumber vector of componentq. ū andn are obtained from the Christoffel
equation, which was presented earlier in Equation (1.44). Substitutingu as given
in (2.80), into equations for stress (1.2) and (1.4) gives components of stress in
layerm as follows:

σm =

(
i

6

∑
q=1

σ̄qei(nq·x−ωt)
)m

(2.81)

Where the components of the stress-amplitude vector ¯σq differ from those of ¯uq

(in layerm) as follows (nt andūs being components ofnq andūq respectively):

(σ̄i3)m
q = (ci3stnt ūs)m

q (2.82)

Looking at layerm which has boundaries atx3 = zm−1 and atx3 = zm, u and
σ = (σ13,σ23,σ33)

T can be written as:{
um

σm

}
=
[
ūm

1 ūm
2 . . . ūm

6
σ̄m

1 σ̄m
2 . . . σ̄m

6

][
H(x3−zm−1)m

]
ei(n1x1+n2x2−ωt)

{
s(x3)m

}
=
[
Pm
][

H(x3−zm−1)m
]
ei(n1x1+n2x2−ωt)

(2.83)

In Equation (2.83), the entries ¯uq andσ̄q are column vectors of length 3 and have
the same meaning as in Equations (2.80) and (2.81). Thus the first matrix on the
right hand side of the equation is a 6×6 square matrix. The dependence of the
field vector on position through the thickness,x3, manifests in the[H(x3)] term
which is a diagonal 6×6 matrix with entries Hll (x3) = exp

(
in3(q)x3

)
, n3(q) being

the vertical component of the wavenumber of theqth partial wave.
The aim now is to look at the value ofs(x3)m at the two interfaces of the layer,

and to obtain a relation linking them. The first interface is atx3 = zm, the second
atx3 = zm−1. Substituting these values into Equation (2.83) leads to the following
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two relations: {
s(zm)m

}
=
[
Pm
][

H(zm−zm−1)m
]
ei(n1x1+n2x2−ωt) (2.84){

s(zm−1)m
}

=
[
Pm
][

I
]
ei(n1x1+n2x2−ωt) (2.85)

Note that in (2.85), the Hm term has reduced to the identity matrix, while that in
(2.84) is a function of the layer thickness. Substituting from (2.85) into (2.84)
gives the following relation which relates the field vectors at the two faces of a
layer. {

s(zm)
}m =

[
Pm
][

H(zm−zm−1)m
][

Pm
]−1{

s(zm−1)
}m

=
[
Tm
]{

s(zm−1)
}m (2.86)

By repeated application of this relation, for all the layers in the system, a
matrix can be formed which relates the field vectors at the top and bottom sur-
faces of the medium. This matrix is the product of all the layer matrices[Tm]
and is referred to as the transfer matrix. For the general three dimensional anal-
ysis presented here, the final transfer matrix will be of dimension 6× 6. For a
two dimensional analysis (valid for isotropic materials or for propagation along
principle axes of materials with symmetry), a 4× 4 matrix is formed.

The transfer matrix has been used widely in the study of Lamb-like wave prop-
agation in layered plates. Chimenti and Nayfeh [22] used the technique to look
at propagation along axes of symmetry in biaxially laminated composite plates,
as well as the more general case where the layers were allowed symmetry as low
as monoclinic and general angles of incidence were used [23, 24]. Taylor and
Nayfeh [25] considered multiple monoclinic layers where slip conditions were
allowed between layers. These papers also describe the use of vacuum or fluid
loading boundary conditions. The former amounts to a traction free surface, while
the latter only requires that shear stress on the surface be zero. An application of
this method is presented in Section 2.7, and dispersion curves are calculated for a
cross-ply fibre-reinforced composite plate.

Much work involving the transfer matrix has been concerned with tackling the
precision issues which arise in its implementation. Specifically when imaginary
wave-numbers occur at high frequency-thickness products. This is the situation
when a partial wave is incident on a layer at an angle beyond the critical angle (i.e.
as grazing incidence is approached), giving rise to the imaginary wavenumber.
The presence of this imaginary term leads to exponential growth in the propagator
matrix [H], and makes computational implementation of the method very difficult
due to loss of precision. One approach taken to avoid this is the Delta Matrix tech-
nique, first proposed by Dunkin [26]. In this technique, 2× 2 subdeterminants
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of the transfer matrices are first calculated, and the final expressions for reflection
or transmission coefficients are expressed in terms of these subdeterminants. The
subdeterminants can be calculated without incurring significant precision losses,
and their use improves the stability of the transfer matrix technique. This tech-
nique has been used by various researchers, including Kundu and Mal [27] who
also highlighted a second precision problem arising in the calculation of the field
vector for transmitted waves and proposed some ways to reorder calculations to
improve this situation. Ĺevesque and Piché [28] further improved on the method,
producing a technique for multiple isotropic layers which is reported to be highly
stable. Hosten and Castaings [29], Castaings and Hosten [30] have published re-
sults based on a further generalisation of this method to multilayered media with
anisotropic absorbing layers, and have shown good stability. For the case of peri-
odically layered media, Potel and de Belleval [31] have proposed the use of Flo-
quet waves. Floquet waves propagate in an infinite, periodically layered, and are
the fundamental modes of an equivalent homogeneous medium. They are found
by solving an eigenvalue problem based on the transfer matrix of one period of
the thickness. When combined with careful choice of frames of reference for the
x3 coordinate, this method can ameliorate the precision problem when analysing
periodic multilayered materials [32]. The method has also been extended to in-
clude lossy or dissipative media [33]. Floquet homogenisation has also been used
by Wang and Rokhlin [34]. Wang and Rokhlin [35] additionally used a stiffness
matrix instead of a transfer matrix, resulting in a better conditioned numerical
problem. The stiffness matrix related the length 6 vector of stresses on top and
bottom surfaces of the medium to the length 6 vector of displacements.

A more stable, but still exact, method used to study wave propagation in a
multilayered medium is the global matrix method [36, 37]. The method involves
building a large (global) matrix out of submatrices describing the behaviour of the
individual layers. For any given layer, the expression for stress and displacement
as a function of the amplitudes of the different components has already been given
in Equation (2.83). Rewriting it more compactly, we have:{

um

σm

}
=
[
Dm(x3)

]{
am
}

ei(n1x1+n2x2−ωt) (2.87)

Note that[D] is a function ofx3. It differs from the 6×6 square matrix in Equa-
tion (2.83), because now normalised displacement polarisation vectors are used,
which explains the presence of the amplitude{a} vector. As in the case of the
transfer matrix analysis, it is necessary to satisfy continuity of displacement and
stress on the interface. If two layers,mandm−1 share a boundary (atx3 = zm−1),
then equating stresses and displacements from (2.87) the following relation must
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hold: [
Dm−1(zm−1)

]{
am−1

}
=
[
Dm(zm−1)

]{
am
}

⇐⇒
[[

Dm−1(zm−1)
][
−1Dm(zm−1)

]]{am−1

am

}
=
{

0
} (2.88)

Equation (2.88) accounts for one interface in the medium. The global matrix is
assembled by repeating the same process for all the interfaces in the system. This
gives rise to an expression of the following form:

[
D0(z0)

] [
−D1(z0)

][
D1(z1)

] [
−D2(z1)

]
... ...[

Dn−1(zn−1)
]

[−Dn(zn−1)]




a0

a1

...
an

=
{

0
}

(2.89)

Equation (2.89) is the basic form of the global matrix method. Algebraic rear-
rangement allows solutions for particular loading conditions or input signals to be
obtained. Lowe [36] has conducted an extensive review of the development and
merits of the global matrix technique. The main advantage of the global matrix
technique is that it is inherently more stable than the transfer matrix as inhomoge-
neous waves produce only decaying exponentials when the matrix is being com-
puted [36]. It is also convenient that the solution gives rise directly to{a}, the
column of partial wave amplitudes which describe the behaviour of the entire sys-
tem across all layers. This information can be obtained from the transfer matrix
method also (which can even be reformulated in terms of amplitudes [31]), but
it always involves a second round of computations after the initial solution is ob-
tained. The main disadvantage of the global matrix method is that as the number
of layers increases, the size of the matrices which must be dealt with increases
also. This limitation has not stopped the global matrix method finding application
in general purpose computer programs for analysis of multilayered media [38, 39].

Another method used to tackle the problem of wave propagation in layered, ar-
bitrarily anisotropic plates is the stiffness, or discrete layer method [40, 41]. This
method involves approximating the plate by dividing it into discrete layers. Within
each layer, the displacements are approximated by interpolation functions of gen-
eralised coordinates. These generalised coordinates can be displacements and/or
tractions at particular points through the thickness of the layer. Different interpo-
lation functions can be used, for example cubic [41, 42], quadratic [40, 43, 44, 45]
or linear [40] polynomials. It should be noted, that the sublayers in this technique
are quite distinct from any physical layers which may be present in the plate being
modelled, and for accuracy each physical lamina of a composite plate is gener-
ally modelled by several sublayers [43]. Once the displacements through the plate
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have been approximated, the approximation is used with the constitutive relations
for the material to formulate the Lagrangian per unit length for each lamina. The
Lagrangian for the entire plate is obtained by summing the individual layers. Fi-
nally, application of Hamilton’s principle results in an eigenvalue problem, which
can be solved iteratively at particular frequencies/wavenumbers. The resulting
eigenvectors describe the mode shapes. These contain the generalised coordi-
nates, which can be substituted into the interpolation functions. The eigenvalues
provide the wavenumbers/frequencies, depending on how the algebra has been
arranged.

An advantage of this method is that it is computationally quite economical [40],
and the difficulty in finding roots of the exact dispersion relation is avoided as now
only an eigenvalue problem needs to be solved. Accuracy is preserved though,
both for unlayered [40] and for layered media [43], and results obtained agree
closely with those obtained from methods without approximation. Indeed, the re-
sults from the approximated method can be used to seed a more accurate technique
with useful initial guesses for roots [43]. Finally, the overall solutions provided
by the stiffness method may be coupled with finite element analysis of specific
regions for greater flexibility [46, 47].

It is worth noting that for many laminated materials (such as fibre reinforced
polymer composites), as the number of layers increases and the frequency de-
creases (wavelength increases), very approximate methods can provide quite ac-
curate results. In this way, it is possible to treat layered plates as homogeneous
anisotropic plates with appropriate material properties, as was done by Karunasena
et al. [43].

2.4.3 Plotting Dispersion Curves

To actually plot the dispersion curve, we need to find combinations of frequency
and phase-velocity (or wavenumber) where the determinants already discussed
go to zero. One way to do this [36] is to locate one point on each of the higher
order curves by scanning across frequency for a fixed wavenumber in the long
wavelength case (this would be a horizontal line near the top of the plot on the
dispersion curves shown here). Then, using curve-following techniques, we can
compute further points on the curves at shorter wavelengths. Difficulties arise
since the curves will in general cross each other and will also become very close
together at higher frequencies. However, this technique is computationally ef-
ficient, and makes it straight-forward to identify and plot individual dispersion
curves. The technique is also quite general. Unfortunately, it is rather difficult to
reliably code such an algorithm.

For the case of dispersion curves in simple materials where it is easy to see the
behaviour of the governing characteristic equations (e.g. Isotropic dispersion2.3),
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it is possible to set up a tailored solution scheme that can isolate specific curves
(e.g. using knowledge of the tangent terms occuring in characteristic equations
such as (2.53)). This has the significant disadvantage of being very non-general.

Another possibility, also discussed in [36], is to calculate the value of the rele-
vant determinant everywhere in the frequency-wavenumber space of interest, and
then to highlight the points/curves where it becomes zero. This is obviously quite
computationally intensive. However, it is a very simple method to implement, in
particular if a program code that can automatically handle complex numbers and
produce contour plots with little fuss. Satisfactory systems for implementing such
a solution include Matlab6 or Python and Gnuplot. By doing a contour plot with
3D data, and plotting only the contours forz= 0, the relevant dispersion curves are
produced. Although it is not possible to automatically plot individual dispersion
curves in this way, it is possible to plot the symmetric and antisymmetric parts of
the spectrum separately for materials with a central plane of symmetry (since the
relevant characteristic equations decouple in this case).

2.5 Propagation Normal to Fibres

2.5.1 Material Properties

We will look here at a transversely isotropic material. As has been mentioned,
an example of such a material is unidirectional graphite fibre reinforced epoxy.
This term is very broad and describes a wide range of materials. Sample material
property data have been provided by Potel and de Belleval [32], and are shown
below.

C11 = 13.5GPa C12 = 6.3GPa (2.90)

C13 = 5.5GPa C33 = 125.9GPa (2.91)

C44 = 6.2GPa ρ = 1600kg/m3 (2.92)

Two planes of propagation are particularly interesting when looking at a material
such as this one. The first is the plane of transverse isotropy (i.e. propagation in
the plane normal to the fibre direction and axis of symmetry). This is the plane
denotedB in Fig. 2.4. This gives the slowness curves shown in Fig. 2.5. As
can be seen, the slowness (and hence velocity) is independent of the propagation
direction. This is why the plane is referred to as a plane of transverse isotropy.

6Thanks to Catherine Potel [48] for pointing out this approach’s usefulness even for plotting
dispersion curves for isotropic materials in personal correspondence via a visiting student in UCD,
Johnny Caron
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Figure 2.4: Schematic of propagation directions

Three distinct velocities are observed, with the longitudinal wave being the fastest
(smallest slowness).

Also of interest is to look at propagation in a plane normal to the plane of
transverse isotropy (and hence parallel to the fibre direction). Such a plane has
been highlighted in Fig. 2.4 and is denotedA. In fact, any plane normal to plane
B would be equivalent. The slowness curves for this case are shown in Fig. 2.6.
In this case the propagation direction has a very powerful effect on the velocity
of propagation. The direction of the fibres is parallel to the vertical axis in the
illustration. In this direction, the slowness of the longitudinal and first shear modes
is at a minimum. This is so for the longitudinal mode because in this direction of
propagation it is stretching the fibres which are far stiffer than the epoxy matrix.
Similarly, the shear mode is shearing normal to the fibres, which is the stiffest
shear modulus of the plate. Also worth noting is that for propagation along the
fibres, the two shear modes have equal slowness/velocity. This is because for this
direction of propagation, they are equivalent (both involving shearing normal to
the fibres). For other propagation directions, each shear mode has quite a different
interaction with the plate and thus a different slowness.

For the perpendicular direction (normal to the fibres), the slownesses become
identical to those seen in the plane of transverse isotropy (this is a direction shared
by both planes of interest.
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2.5.2 Dispersion Curve

Wave propagation in a plane normal to the fibre direction in a transversely isotropic
composite is equivalent to propagation in an isotropic plate, and this simplifies
greatly the calculation of a dispersion curve for the material. This property can
be seen in the slowness curves shown in Fig. 2.5 for graphite-epoxy compos-
ite. Earlier, in Fig. 1.24, we saw the same property in the propagation of waves
in Cadmium-Sulphide, another transversely isotropic material. In each case, the
slowness curves are all circles, indicating that the slowness (and hence phase ve-
locity) is independent of propagation direction for waves polarised in this plane.
A dispersion curve for Lamb waves in a plate of such a transversely isotropic ma-
terial is presented in Fig. 2.7. The material used is the graphite fibre reinforced
composite mentioned in Section 1.4.3 (also a transversely isotropic material, al-
though I did not plot slowness curves to highlight the plane of transverse isotropy).
The dispersion curve is plotted for propagation where all motion is restricted to
the plane corresponding to the slowness curve of Fig. 2.5. For such a polarisa-
tion, the material behaves exactly like an isotropic material. The effective moduli,
however, are different to those of aluminium, which were used in the calculation
of Fig. 2.2. The plane of transverse isotropy being theX1−X2 plane, the effective
values of the Laḿe constants are, by Equation (1.35),

λ = C12 = 6.3GPa

µ = C66 =
1
2

(C11−C12) =
1
2

(13.5−6.3)GPa= 3.6GPa
(2.93)

The effective Poisson’s ratio is, by Equation (1.38),(C11/C12+1)−1 = 0.318.
The fact that this is different from the Poisson’s ratio of aluminium means that
the dispersion curve will have a somewhat different shape to that observed for
aluminium. The generated curve is shown in Fig. 2.7. This plot has been pro-
duced using the contour technique described earlier for isotropic materials like
aluminium. At first glance, the dispersion curves look the same as those obtained
for aluminium. This is unsurprising given that Poisson’s ratio is quite similar for
both materials (and remembering, of course, that the curve for the composite ma-
terial applies only to a single plane of polarisation). However, there are some
interesting points of difference between the curves for the materials. Note, for
example, the crossing ofA3 andS3 which occurs at approximatelyΩ = 6.3 and
c/ct = 6.5. In the case of aluminium, these modes also cross, but do so only at
Ω = 2π and in the limit asc/ct → ∞.

An effect of the change of Poisson’s ratio is that the analytical points on the
curves (e.g. the cut-off values ofΩ) no longer happen at such mathematically
neat locations on the graph. Just as making the assumptionλ = 2µ simplified the
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Figure 2.7: Velocity/frequency dispersion plot for unidirectional graphite fibre-
reinforced epoxy, in plane of transverse isotropy. Solid lines are symmetric
modes, dashed lines are antisymmetric modes.

writing of the equations governing the behaviour of a free plate, it also simplified
the computation of the final dispersion curves.

Finally, although the use of dimensionless notation has simplified the previ-
ous discussion, it is important to realise that thect term used in the definition
of dimensionless wave-speed and frequency is a function of material properties
(c2

t = µ/ρ). For aluminium,ct = 3.15km/s, while for theX1−X2 plane of the
composite material discussed the velocity isct = 1.50km/s. These velocities can
also be obtained by examining the slowness curves in Figs 1.7 and 2.5, and invert-
ing the value of slowness corresponding to the shear mode.
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2.6 Propagation Parallel to Fibres

2.6.1 Dispersion Curve

In this instance, the guided waves are propagating parallel to the fibre direction.
This is equivalent to rotating the plate orientation of the preceding Section 2.5 90
degrees about the plate normal. The analysis of the propagation of waves in this
system has been discussed in Section 2.4.1. A sample calculation will be pre-
sented here, which will give a dispersion diagram for guided waves propagating
in the material subject to this orientation.

The same material properties will be used as in the previous section. These
have been detailed in Equations (1.32) and (2.90). As for the case of a plane of
transverse isotropy, the contour method will be used to generate the dispersion
curves. Although this method is quite simple, its application is not as straightfor-
ward in the current case as it is for isotropic or transversely isotropic materials.

Due to the additional anisotropy in the plane of propagation, the characteristic
equation must be reformulated for each value of phase velocityc. This is done by
solving the quadratic Equation 2.69 to find the admissible values ofα (2.63). Two
values ofα2 are found corresponding to four values ofαq. These are denoted±α1

and±α3. Having found the values ofα which apply to a particular phase velocity
(i.e. those bulk modes with the appropriate wavenumber in thex1 direction) it is
possible to solve the characteristic Equation (2.77). This is rewritten explicitly as:

sin(α1ω/c)cos(α3ω/c)
cos(α1ω/c)sin(α3ω/c)

=
D13D31

D11D33
(2.94)

sin(α1ω/c)cos(α3ω/c)
cos(α1ω/c)sin(α3ω/c)

=
D11D33

D13D31
(2.95)

The former of these describes the relation between phase velocity and frequency
for symmetric modes, while the latter relates to antisymmetric modes of prop-
agation. In these expressions, the only influence of frequency is throughω in
the trigonometric terms. Theα andD terms are purely functions of the phase
velocity c and the material properties. Thus for each value ofc in the desired
range,α1, α3, D11, D33, D13 andD31 are calculated. Then, the residual is calcu-
lated for a range of values of frequency (ω), thus plotting one horizontal stripe
on the dispersion curve. Once the calculation has been performed for the entire
frequency-velocity space, the zero contour is plotted, corresponding to the disper-
sion curves. In Fig. 2.8, dimensionless frequency and velocity are again used. The
definition of these quantities is somewhat more arbitrary here than it was in the
case of isotropic materials, or in the case of transversely isotropic materials for
propagation in the plane of isotropy. Now, there is no single meaning to the ve-
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Figure 2.8: Velocity/frequency dispersion plot for graphite fibre reinforced com-
posite, in plane parallel to fibres. Solid lines are symmetric modes, dashed lines
are antisymmetric modes.

locity ct , as the velocity of the shear mode varies with bulk propagation direction
(recall Fig. 2.6). To aid comparison with the dispersion curves for waves propa-
gating in the same material in the plane of transverse isotropy, the same value of
ct will be used, which corresponds to a velocity of 1500m/s.

Comparing Figs 2.8 and 2.7, there are obviously some profound differences.
Most notable is that the S0 mode now has much higher phase velocities in its ini-
tial non-dispersive region. Additionally, this flattened region is even more flat and
linear than it was for propagation in the plane of transverse isotropy. Also notable
is that the plateaus in the dispersion curves are far more distinct, and flatter than
for the earlier propagation direction. This is especially clear for the symmetric
modes. Another difference is that the cutoff frequencies have been shifted up-
ward, meaning that now fewer curves appear on the plot, even though the range
of frequencies used is the same and the range of velocities plotted in Fig. 2.8 is in
fact greater than that used in Fig. 2.7. The mode that shows the least difference
is the A0 mode, which has the same shape for both materials, and similar (though
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somewhat higher) phase velocity. In many other ways, both dispersion curves are
qualitatively quite similar, for example in the limiting behaviour as frequency or
phase velocity tend to infinity.

2.7 Cross Ply Composite

2.7.1 Dispersion Curve

A natural progression from the previous two sections is to look at a cross-ply lam-
inate plate. Such a composite is formed from multiple layers of fibre-reinforced
polymer material. As opposed to the plates just described, here the fibre direction
is alternated from layer to layer. This gives a plate which has a more uniform
in-plane strength. The out of plane strength is the same as for a unidirectional
plate formed from the same laminae. While it would be possible to look at prop-
agation in any arbitrary direction, matters simplify considerably if the analysis is
restricted to propagation in a plane coinciding with the planes of symmetry of the
component laminae.

By restricting the propagation to planes of symmetry, it is possible to use the
simplified expressions of Section 2.4.1 to describe the behaviour of the individual
layers. The dispersion characteristics will be determined using the transfer matrix
method, which has been described in Section 2.4.2. Due to the choice of propa-
gation direction and material properties, the current analysis will be simpler than
that outlined in the earlier exposition of the transfer matrix.

As before, propagation will be restricted to theX1−X3 plane. Wavenumber
will again be expressed in terms of a termα, as shown in Equation (2.63). Since
propagation is in a plane of symmetry, the Christoffel equation allows easy sepa-
ration of the shear-horizontal component from the shear-vertical and longitudinal
displacements as shown in Equation (2.64). This means that the quadratic Equa-
tion (2.69) can be used to find the values ofα corresponding to a particularX1

phase velocity. To arrive at the final dispersion relation, it remains to account for
the interfaces between the discrete layers comprising the overall plate.

As noted earlier in the discussion of stratified media, it is useful to formulate a
displacement-stress vector, as shown in Equation (2.78). Since the displacements
are polarised in theX1−−X3 plane, and the only applicable stresses areσ13 and
σ33, the expression can be simplified somewhat. Thiss vector can be written in
terms of the componentU1 amplitudes of the various components as follows for a
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particular layerm:

{
s(x3)m

}
=


um

1
um

3
σm

13
σm

33

=


1 1 1 1

w1 −w1 w3 −w3

D11 −D11 D13 −D13

D31 D31 D33 D33


m[

H(x3−zm−1)
]

Um
11

Um
12

Um
13

Um
14


(2.96)

This is equivalent to Equation (2.83), though it has been simplified for the current
analysis. As in the previous expression, the[H] term is a diagonal matrix (here of
dimension 4×4) with entries Hmm(l) = exp(ikαmx3). Thew1, w3 andD11, D13,
D31, D33 terms are as given in Equations (2.72) and (2.76) respectively. Writing
this expression for both the top (x3 = zm−1) and bottom (x3 = zm) interfaces of
the layer, and substituting from one into the other (as was shown in Section 2.4.2)
leads to the following expression, whered is the thickness of the layerm, and[Pm]
is the square matrix from Equation (2.96).{

s(zm)m
}

=
[
Pm
][

H(d)m
][

Pm
]−1{

s(zm−1)m
}

=
[
Tm
]{

s(zm−1)m
}

(2.97)

Since the stress and displacement at the bottom of one layer must be the same as
the stress and displacement at the top of the next layer, repeated application of this
procedure allows the stresses and displacement at the top of the plate to be related
to the bottom of the plate:{

s(0)
}

=
[
T1
][

T2
]
. . .
[
Tn
]{

s(n)
}

=
[
T
]{

s(n)
}

(2.98)

At this point, there are two options regarding the calculation of dispersion
curves for a free plate. The first option is to set the stresses at the top and bottom
surfaces equal to zero. This results in the following equation:

u0
1

u0
3

0
0

=


T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44




un
1

un
3

0
0

 (2.99)

This gives a characteristic equation:

T31T42−T32T41 = 0 (2.100)

Solving Equation (2.100) provides the dispersion characteristics for the plate.
If the plate is restricted to symmetric construction (i.e. midplane of the lami-

nate is a plane of mirror symmetry), then alternative characteristic equations are
available. The bottom of the plate is still a free surface, but it is only necessary
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to account for layers up to the plate midplane. Ifn layers are included, then this
relates to a plate with 2n layers in total. Two sets of boundary conditions for the
plate midplane are appropriate, and these correspond to symmetric and antisym-
metric modes of the plate.

Looking first at the case of symmetric modes, it has been noted repeatedly that
this requires vertical (u3) out-of-plane displacements to be zero on the midplane
of the plate. It is also necessary for the plate centreline to have zero shear stress.
This produces the equation

u0
1

u0
3

0
0

=


T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44




un
1

0
0

σn
33


T31T44−T41T34 = 0

(2.101)

Alternatively, for antisymmetric motion, in-plane displacements (u1) must be zero
on the midplane, and normal stresses must go to zero. This gives the characteristic
equation: 

u0
1

u0
3

0
0

=
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


0
un
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σn

13
0


T32T43−T42T33 = 0

(2.102)

In every case, the total transfer matrix[T] is reformulated for each value of the
x1 phase velocityc. Then, values of frequency which set the required residual to
zero are determined. The number of computations required increases significantly
as the number of layers increases, because in general a transfer matrix must be
computed for each layer. This makes computations considerably slower than in
the case of a transversely isotropic material. If there are several identical layers
with the same material orientation and properties and the same thickness, then
it is possible to only compute the[T] for these layers once, and then include it
repeatedly as appropriate in the calculation of the global transfer matrix.

In the current analysis, symmetric plates will be considered. Thus, the char-
acteristic Equations (2.101) and (2.102) can be used. The material used in the
individual layers will be the same as that discussed already in the two orientations
of unidirectional plate. The composition is as indicated in Fig. 2.9, which shows
two views on the same composite lay-up of alternated 0◦ and 90◦ layers. The di-
agram depicts the plate geometry in two planes of propagation. Half the plate is
shown. The cross-section shown in Fig. 2.9(b) is taken in a plane perpendicular
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Figure 2.9: Crossply plate geometry is of stacking sequence (a)(90,0,90,0,90)s,
(b) (0,90,0,90,0)s.

to that of the cross-section in Fig. 2.9(a). The pattern of dots denotes laminae for
which propagation is in the plane of transverse isotropy, while the horizontal line
denotes layers for which propagation is parallel to the fibre direction. The appro-
priate material properties, when used in the calculation scheme discussed earlier in
this section, produces the dispersion behaviour shown in Fig 2.10 for propagation
in the plane shown in Fig. 2.9(a). The definitions of the dimensionless quantities
use the same value ofct as was used in the previous two unidirectional composite
plate dispersion curves. As in Section 2.6, this selection is somewhat arbitrary,
but it greatly facilitates comparison between the different plate orientations and
geometries.

Clearly, the dispersion behaviour shown in Fig. 2.10 is different to that of
a plate composed entirely of either of the two constituent material-orientations.
First, it is apparent that the magnitude of the low frequency phase velocity of the
S0 mode is located between that found for propagation in the plane of transverse-
isotropy, and that for propagation parallel to the fibres. Similarly, the plateaus
in the other curves occur at velocities between those seen in the previous two
material orientations. This is unsurprising given that the plate studied here is a
mixture of the properties of the plates studied in the previous two subsections. The
number of curves appearing on the dispersion plot (13) also places the crossply
between the previous two cases (12 and 14), indicating that the location of cut-off
frequencies is higher than in the isotropic case, but lower than the parallel-to-fibres
case.

The relatively sharp first bend in the S0 curve seen in Fig. 2.10 is similar to that
seen in the case of parallel to fibre propagation. However, for higher order modes,
the shapes of the curves are more reminiscent of those seen for propagation in
the plane of transverse-isotropy, as the plateaus are not so horizontal as those in
Fig. 2.8.

The noisy band at the bottom of the dispersion plot is an annoyance. A similar,
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Figure 2.10: Velocity/frequency dispersion plot for graphite fibre reinforced cross-
ply composite as shown in Fig. 2.9(a). Solid lines are symmetric modes, dashed
lines are antisymmetric modes.

but less obtrusive, effect occurred even in the case of the transversely-isotropic
plot shown in Fig. 2.7. In that case it manifested as a single additional line close
to the bottom of the plot. This is a consequence of plotting the data using a
contour method, and also perhaps an artifact of the computation scheme. It only
becomes truly problematic if dimensionless frequencies in the rangeΩ > 16 are
to be plotted.

Finally, it is worthwhile to consider the dispersion behaviour for the same plate
shown in Fig. 2.9(a), but for propagation in a plane at right angles to the propaga-
tion plane used to generate Fig. 2.10. For this direction, the layers where formerly
propagation was in the plane of transverse isotropy now have propagation parallel
to the fibres. Similarly, planes that had propagation parallel to the fibres are now
isotropic. This is as shown in Fig. 2.9(b). The dispersion curve produced is shown
in Fig. 2.11.

The dispersion curve produced is quite similar to that observed for the first
propagation direction. The main difference observed is that the velocity of the
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Figure 2.11: Velocity/frequency dispersion plot for graphite fibre reinforced cross-
ply composite as shown in Fig. 2.9(b). Solid lines are symmetric modes, dashed
lines are antisymmetric modes.

S0 mode, and the plateau velocities of the higher order modes, are higher than
they were for the first propagation direction, while still being lower than those
observed for a unidirectional plate with propagation parallel to the fibres. This
is unsurprising given that now 60% of the layers have their fibres aligned in the
propagation direction, compared to 40% before. This makes the plate somewhat
stiffer in the propagation direction, leading to an increase in the phase velocity.
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