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Abstract

The aim of this document is to summarise the information on elastic
material properties, and wave propagation which | have found in my recent
reading. The books and papers read are listed at the end of this document,
and cited throughout. First, the basic consititutive equations governing elas-
tic solids are presented. Once the concept of elastic properties has been
established, our attention turns to the various symmetry classes which exist.
These symmetries simplify the material properties. | have written more on
symmetry than | had expected to, as the area turned out to be surprisingly
interesting. Following on from the exposition of the material properties of
various symmetry classes, we look at solving the dynamic elastic equations
for specific materials. Slowness curves are introduced and calculated for
particular cases.

Finally, following the discussion of Slowness curves in bulk anisotropic
materials, attention is turned towards the problem of Lamb waves: guided
waves in plates. This phenomenon is studied for isotropic plates, and also
for anisotropic and inhomogeneous (layered) plates.

It is important to note that this document is still a work in progress. If
anyone actuallydoesread it, and has suggestions/corrections, | would be
very glad to hear from them atichael.conry@acronymchile.com
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Chapter 1
Bulk Waves

1.1 Basic Equations

The dynamic behaviour of a linear elastic generally anisotropic solid can be con-
veniently expressed using tensorial notation as shown below in equgtion (1.1),
where indices and j vary over 1,2,3. The usual tensor summation convention is
assumed

90 _ 0%y

X T ot2
Equation [(T.1), is written in the reference orthogonal coordinate sysfem
(X1,%5,%3). The constitutive relations, which show the interdependence of strain
(€(,) and stressd ;) can be given either in terms of stiffnessef()

(1.1)

o1 | = Cliki & (1.2)

or inversely in terms of complianceqjﬁl) as in equatior (1]3).

& | = Sk Okl (1.3)
Finally, strain and displacement) are related as shown in equatién {1.4).
1/0du Jdu
8|/(’| = E <8_X|II( + &_x:’<> . (14)

In all of these equations, the presence of the prime indicates that the quantities are
defined in the reference coordinate system.
Symmetry arguments allow some simplification of the quantities just intro-

1 Summation over repeated indice®;yj = X 1y1 + Xi 2Y2 + Xi 3Y3.
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duced. The strain and stress tensors are symmetricgf.e= oj andgj; = €j;.
Thus, the stiffness (and compliance tensors must have a corresponding degree of
symmetry which leads to the simplifications shown in equafion (1.5).

/ / / /
Cijk = Cjii = Cijik = Cjil (1.5)

By energy considerations, as demonstrated in Nayfeh [1] and Auld [2], it can be
shown that there is further symmetry in the stiffness and compliance tensor. The
argument begins with a definition of strain energy densltyand the use of the
constitutive relation (1]2).

U = 30ij&]] = 5Cj €uiEl] (1.6)
Differentiating this expression gives the result

2
ci’jk, = % (1.7)
Interchanging the order of differentiation does not change this relation, and we
conclude that
Cliki = Ckiij (1.8)
The simplifications introduced by (1.5) and (1.8) mean that rather than hawing 3
3x 3 x 3= 81independent values,, has at most 21 independent coefficients.

1.2 Reduced Notation

Often, when writing out expressions involving material stiffness properties, it
is convenient to use a reduced notation which takes advantage of the symmetry
present in the stiffness tensors describing even the most general elastic materi-
als. This notation is a convenience, and is widely used in books and papers. In
short, the contractions are as follows, where each pair of subscripts in the tensor
equations is mapped to a single subscript in the reduced equations:

1= 11 222 3= 33

(1.9
4 <— 23 5= 13 6«12

To facilitate the use of this notation, engineering shear strain is introduced, defined
as follows:

N2 = 2€15, N3 = 2€13, Vo3 = 2653, (1.10)
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We can now rewrite equatiop (1.2), using this new notation as shown in equation
(1.13) (following the lead from Nayfeh [1], upper caSg is used to make the
distinction from the full notatiom;j,, more apparent).

/ [~/ / / / / /] /
6}1 11 C/lz 13 C,14 15 ~16 8}1
ng 12 C/22 23 C/24 Cg5 C/ze ggz
O33| _ [Ci1a Co3 Cg3 Cyy Cgs Cgg| |33 (1.11)
6/ - / C/ / C/ C/ / -
23 14 “24 Y34 Cusa Cus Cyel| | V23
G/ / C/ / / / /
13 15 o5 G35 Lys Lgg Uggf Y13
G/ / / / / / / ,y/
012 Y16 Y26 Y36 “ae Lme Leel [112]

1.3 Material Symmetry

Up to this point, we have been dealing with the most general relationships apply-
ing to linear elastic, generally anisotropic materials. Such materials are referred
to as triclinic materials. Many real materials have inherent symmetries which can
greatly simplify their behaviour. In this section, we will look at some of these
materials.

Itis important to introduce the concept of transformation tensors. Transforma-
tions are fundamental to the definition of tensors. In general, a fourth order tensor
such agty, transforms from the reference coordinate syskeio an alternative
coordinate systemg as follows

Cmnop= Bmiﬁnjﬁokﬁplci/jkr (1.12)

Similarly, a second order tensor such as the stress teg’]s!mansforms as follows.

Omn= ﬁmiﬁani/j- (1.13)

Finally, a first order tensor such as the displacement tarjsoansforms simply
as
Um = PBmil. (1.14)

The transformation tensd; has as elements the cosines of the angles between
thex; and thex’j axes.

We will define our various symmetry classes in terms of transformation tensors
(e.g. for amirror reflection, or a three fold rotation). A symmetry condition means
that the stiffness (or compliance) tensor must be invariant under such a transfor-
mation. This allows the formulation of equations which lead to simplifications in
the stiffness tensor, either through the elimination of entries, or the establishment
of relations between them. This is the method shown in the following treatment.

A slightly different, alternative approach, used by LekhnitskKii [3], is to look at
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symmetry in terms of strain energy per unit volurde,Using the tensor summa-
tion conventiony is shown in equatiorj (1.15).

V= ]é-cijkl 0ij Okl (1.15)
Clearly, strain energy is independent of any particular coordinate system. If the
material is symmetric under a coordinate transformation, then the tgnsf the
stiffness tensor will also be invariant. The stressgswill transform to stresses
Gi/j in the new coordinate system. Applying these observations to equatioh (1.15)
leads to the following result.

%Cijkl Gjj Okl = %Cijkl Gij Ok (1.16)

Given our earlier observations on the transformation of second order tensors (see
equation[(1.13)), we can easily substitute for the teq‘psaquivalent expressions

in terms of the untransformed stresses, and the elements of the transformation
matrix Bjj. Once this is done, coefficients for particular terms, 612, ... are
equated and simplifications become apparent.

The field of crystallography is a large one, and it has developed a rigorous
way of classifying and identifying symmetry classes. | will not attempt a full
examination of material symmetry. | will, however, go so far as to include point
group diagrams for most of the symmetry classes discussed. On these diagrams,
points are marked using either crosses or circles. A cross indicates that a point
is above the plane of the page, a circle indicates a point below the page. Under
the transformations defining the symmetry class, all points shown on the diagram
must be equivalent. In the naming of the groups, a number such as 2 or 3 indicates
a 2 or 3 fold rotation axism indicates a plane of mirror symmetry. If we write,
for example, Zm; this means that the plane of symmetry referred tonbys
perpendicular to the axis referred to by 20 @ould mean that the plane of mirror
symmetry was parallel with the 2-fold rotation axis. An overbar, indicates that an
inversion is applied (e.g2 indicates a 2-fold axis with inversiod, is a simple
inversion).

We will see that materials having different point groups may in fact be equiv-
alent in terms of their stiffness tensor symmetry requirements.

It should be noted that Nayfeh’s book [1] simplifies greatly the discussion of
symmetry. He gives only a single example of each class (equivalent to discussing
only one point group). These notes originally (and perhaps to some extent still)
reflect this simplification, though | am attempting to add more detail. Auld [2],
Fedorov([4], and various books on crystallography [5, 6, 7] provide more thorough
treatments of the area.
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Figure 1.1: Triclinic Symmetry Point Groups

1.3.1 Triclinic Symmetry

It is worth noting that it is possible to introduce an inversion center without in-
troducing any restrictions to the stiffness tensor. The transformation tensor for an
inversion center is given as:

-1 0 O
Bi=10 -1 O (2.17)
0O 0 -1

Now, since the stiffness tensor is even ordered (its order is 4), requiring iden-
tity under the application of;; to cjj introduces no restrictions on the terms of
Cijki- Similarly, in later discussion, any transformation tensors which differ only
in terms of the application of an inversion center are equivalent in terms of their
effects on the stiffness tensor.

It should also be noted that triclinic materials (and indeed all materials) are, of
course, invariant under the identity operation.

1.3.2 Monoclinic Symmetry

Monoclinic materials are materials having, for example, one plane of mirror sym-
metry. Other examples can be seenin figure|1.19. Considering the mirror symme-
try case, let us say that this plane coincides withdhe x;, plane. This symmetry
condition requires that the material be invariant under the transformggjiate-

fined by equatior (1.18).

Bij =

O+
(ol o]

0
0 (1.18)
1

o
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Figure 1.2: Monoclinic Symmetry Point Groups

Consider the formation of the termsio. Clearlycyzio= ﬁziﬁsiﬁliﬁzicfjm- Now,
looking at equation[(1.18), it is clear that the terflis= 0 fori # j. Thus we

getcozio = PooPazfi1B22Cr31,= —Chz1» HOWeEVer, we require thabzio = Chgs

which leads to the conclusiaz,,= 0. Other elements af,; which vanish are
Cl123 Co203 Ca323 C1113 Coo1a Caz138NdC 3,5 These are all the unique terms with

an uneven number of 3’s in their subscript. With these 8 terms removed, we are
left with 13 unique coefficients (compared with 21 for the more general triclinic
material). The form of the reduced stiffness matrix for monoclinic materials is

shown in equatior (1.19).

_ij_l_ [ ;11 C;LZ :13 0O O les_ 'eél'
933| _ Ciz Co3 Cgs 9 9 C36| [&33 (1.19)
023 0 0 0 Cy Cyp O Vo3
013 0 0 0 Cp C O %3
1012 Cle Cos C36 0 0 Gy |12l

1.3.3 Orthotropic Symmetry

If we introduce a second plane of symmetry, say the-x; plane, we get an
orthotropic material. As well as being invariant under the transformation tensor
(1.18), this material is also invariant under the transformation tepsoi (1.20).

1 0 O
Bj=10 -1 0 (1.20)
0O 0 1
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Unigue elements 0¢fjk| which vanish under this invariance condition afg,,
Cho12 Ch312@NACH 35 (€lements with even numbers of 2's). These simplifications
leave us with 13- 4 = 9 independent coefficients. Since we have two orthogonal
planes of symmetry, introducing a third plane will have no further effect on the
stiffness tens@; The form of the reduced stiffness matrix for orthotropic mate-

| | |
2mm 222 mmm

Figure 1.3: Orthotropic Symmetry Point Groups

rials is shown in equationi (1.R1). The point diagrams of the symmetry classes
satisfied by this equation are shown in figurg 1.3.

_ij_l_ [ :11 Cilz :13 O 0 O 'eél'
RS
O33| _ |“13 Loz La3 €33
Gé3 10 0 0 CQA 0 0 53 (1.21)
Gi?) 0 0 0 0 C£/35 (/) 7/13
012} |0 0 0 0 0 Cg [72]

1.3.4 Tetragonal Symmetry

In the next symmetry case, we introduce the concept of transformation by rotation.
For the case of a counterclockwise rotation of an aggibout thex; axis, the

2 Nayfeh [1] incorrectly states that if we have two perpendicular planes of mirror symmetry,
then any plane normal to them must also be a plane of mirror symmetry. Working through the ele-
mentary calculations, we see that combin[ng (]L.18) pnd](1.20) does not produce the transformation
matrix of the third plane of symmetry, but differs from it by a factor-ef (it is equivalent to a
two-fold rotation axis aligned along the intersection of the two mirror-planes). We have already
seen {1.3.]) that an inversion imposes no extra conditions on the stiffness matrix. Thus, Nayfeh
is correct in ignoring the effect of a third plane of mirror symmetry on the stiffness tensor.
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422

Figure 1.4: Tetragonal Symmetry Point Groups
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transformation matriy;; is given as

cosp sing O
Bij = |—sing cosp Of. (1.22)
0 0 1

Fedorov [4] describes the tetragonal symmetry class. In this case, we say
that the material properties are invarient under rotatioys-efr /2 about axisq.
These systems have 6 significant elastic m@i[ﬂie form of the reduced stiffness
matrix for tetragonal materials is shown in equation (IL.23).

(014 ] [Ci; Cip Ci3 0 0 07 [ey]
Géz :12 gll C:;S 8 8 8 géz
O33| _ |L13 La3 3 €33
o =10 0 0 Cu 0 0|1 (1.23)
Gé3 0 0 0 0 Cﬁm (3 )/13
012 |0 0 0 0 0 Cgl [n2

The matrix given in[(1.23) is taken from Fedorov’s work [4], and applies to all
tetragonal materials. Auld[2] (and some Russian workers cited by Fedorov) di-
vide the tetragonal (and trigonal, see below) systems into subclasses with either 7
or 6 independent moduli. The classes with 6 moduli have the matrix as shown in
(1.23), while those with 7 have a matrix in the form [of (1.24) below.

_Gél- _C:11 i12 i13 0 0 /155 ] _eél-
022 g/12 12 Cia 8 8 _%16 €22
O33| _ [~13 “13 ‘33 €33
| |0 0 0 Cy 0 0| (1.24)
13 9 0/ 0 0 Gy 9 13
012] [Cs Ci O O 0 G |2l

The classess with 7 moduli aretand 4m. Those with 6 aresm 422,42mand
4/mmm Fedorov asserts that the distinction is artificial, and that correct choice
of axes reduces all tetragonal (and trigonal) systems to 6 independent significant

3 Fedorov quotes different numbers of independent elastic moduli to Nayfeh, and also to Auld.
For example, in the case of monoclinic crystal he gives the number of 12, as opposed to 13 in
Nayfeh's work. As far as | understand, this discrepancy is because Fedorov use¥ thaiiger
to fix the orientation of the coordinate system. Thus, for the orthorhombic/orthotropic system,
Nayfeh and Fedorov agree on the number of 9, as the two perpendicular planes are sufficient to fix
the orientation of the coordinate system. | should look into this in more detail, and maybe browse
through a book on crystallography (Fedorov alludes to far more detail on symmetry classes than
Nayfeh does).
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moduli. It will be noted that the classes with the larger number of moduli are
those which inherently fix only one direction (principally the axis about which the

rotations occur), while the classes with 6 moduli are those which inherently fix all
coordinate directions (axis of rotation, and normal to a mirror plane, for example).
See also the footnote for a couple of notes. | will go through this in more detail in
the future. The point groups for all of these classes are shown in figyre 1.4.

1.3.5 Trigonal Symmetry

Materials with trigonal symmetry have a trigonal axis, which we will assume to
coincide withx;. This means that the material is invariant under rotations of
¢ = 2m/3 about thex; axis. According to Fedorov [4], in this case there are
6 significant moduli (see footnote Hi.3.4). The form of the reduced stiffness
matrix for trigonal materials is shown in equati¢n (1.25).

Gil- [ C:ll C:12 C:13 Cllfl _(/355 0 ] —gél_

022 812 811 C/13 _814 C(g)s % €22

o €
R A A A
Gés —Cs Cps O (/) Cém . /C/14 / N3

012 L O 0 0 Gy Cy 3(Cu—Cy)l [N

Fedorov shows that equatidn (1.25) may be simplified by correct choice of coor-
dinate system, to give the form:

'Gél' _C:11 Cilz Cils Cllfl 0 0 -8é1-
ng 2/12 811 813 —814 g g 8;2
O33| _ |“13 13 33 €33
oyl |Cly Cy 0 Cyy O 0 23 (1.26)
s 0 0 0 0 C Cy ||f
012 L O 0 0 0 Ciy 3(C;1—Ci)l [N

As mentioned before in section 1.3.4, Fedorov [4] and Auld [2] differ on the
number of independent moduli. Fedorov asserts it is 6 for all trigonal classes.
Auld argues that it is 7 for classes 3 aBdwhich have the stiffness matrix as
shown in [1.2p). Auld says that there are 6 significant constants for classes 32,
3mand3m. Similar arguments may be made as in the case of tetragonal systems
[1.3.4. See also footnotes. More detail required on this topic. The point diagrams
for all classes are shown in figyre [1.5.
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1.3.6 Transversely Isotropic Symmetry

To obtain properties for transversely isotropic materials, we can apply the rotation
transformation[(1.22) to the properties for an orthotropic material (see section
[1.3.3). Itis possible to write out expressions for each of the terms in the new
stiffness tensoc;j . Full details can be found in Nayfeh’s book [1], and can also
be found in the computer code accompanying this document. A couple of samples
are presented here:

C1111= €;111C0% @ + ChynoSin’* ¢ + 2(C) 109+ 21 91 SINP ¢ COS ¢ (1.27)

C2222= Cy111SIN" @ + Ch09,COS ¢ + 2(C) 109+ 2C) 91 ) SIFP ¢ COS ¢ (1.28)

C2212= (C1111— Ch122— 2C1219) COSP SIM® @ + (Cl105— Conop+ 2C 215 SiNG COS’ ¢
(1.29)

Clearly from [1.2}) and (1.28), if we require the material properties to be invariant
for ¢ = m/2, it is necessary foc;;;, andc,,, to be identical. The full set of
restrictions thus imposed are:

/ /
C1111= Co222
/ /
C2233= C1133 (1.30)

/ /
C1313= C2323

Further requiring invariance under general rotations aboukjteis, leads to
additional restrictions. Consider equatidén (1.29). Under the invariance condition,
we requirecpo12 = 0'2212 However, for an orthotropic materiaij?zlz: 0. This
means that the right hand side [pf (1.29) equals zero. This, along[with (1.30) gives
the relation:

/ / /
C1111— C1122= 2C1212 (1.31)

Thus, there are 9 4 = 5 independent coefficients in the stiffness tensor. The
form of the reduced stiffness matrix for transversely isotropic materials is shown
in equation|[(1.32). It should be noted that this appears to be identical to the matrix
supplied by Fedorov [4] for the case of a hexagonal crystal. He forms the hexago-
nal case by noting that it is equivalent to the simultaneous presence of identically
direct twofold and threefold axes. He forms the ma@ixfor the hexagonal case

by combining the properties of these two cases (equafiong (1.19) anf (1.25)). The
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point groups for the hexagonal symmetry case are shown in figyre 1.6.

o11] [Cuu Cp C3 O O 0 €]

G2 Cp, Gy Gy 0 0 0 €5

Gés — C/13 C/13 CI/33 0 0 0 8é3 (1 32)
Gy 0 0 0 Ck O 0 v '
ol 0 0 0 0 Ci 0 Vi

015 L0 0 0 0 ©0 %(C:/Ll_cllz)_ | 2]

1.3.7 Cubic Symmetry

To define cubic symmetry, we start from the orthotropic cg8€3(3), and again
apply rotations, both by angie about thex; axis (as in§1.3.6) and by anglg

about thex, axis. We require that the material is invariant for rotatigns /2
andy = /2. This means that the coordinatgs x, andxj; are completely inter-
changeable. This reduces by 6 the number of independent stiffness coefficients
(compared with the orthotropic case) to give- 8 = 3 independent coefficients.

The form of the reduced stiffness matrix for cubic isotropic materials is shown in

equation[(1.33).

(014 ] [Ci; Cip Cip 0 0 07 [eyy]
R
O33| _ |L12 Ca2 L1 €33
Gés 10 0 0 Cés (? 0 7/23 (1.33)
6}3 0 0 0 0 C66 9 ){3
[C12] |0 0 0 0 0 Cgl (72

1.3.8 Isotropic Symmetry

Finally, the greatest degree of symmetry possible is isotropic symmetry. In this
case, the material is invariant under rotation by arbitrary angkesd¢. In this

case, there are only two independent stiffness constants. The form of the reduced
stiffness matrix for cubic isotropic materials is shown in equation {1.34) (stress
and strain terms are omitted for clarity). Point group diagrams are superfluous for
this case as every point is equivalent to every other point.

'C:ﬂ C:12 C:12 0 0 0
EdE o 0 0
12 12 11

1.34
0© 0 0 iCu-Cp O 0 (1.3
O 0 O 0 3(C11—Cly) 0
0 0 O 0 0 3(C11—Ciy)
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The two exisiting constants can be represented in various ways. One commonly
used form of elastic constants are the léaconstants. These are defined in terms
of elements oC;; as follows [2]:

A=Cp

1 (1.35)
p=Cy4= > (C11—Cyr2)

Conversely, the terms of the tensgg, can be neatly expressed in terms of léam
constants and Dirac deltas [8]:

Cijki = A&ij & + 1 (8 Sji + i i) (1.36)

In engineering work, another commonly used pair of elastic properties are Young’s
modulus and Poisson’s ratio. The definitions of Young’s modulus and Poisson’s
ratio, along with expressions for them in terms of element€jpfare given in
Equations[(1.37) andl (1.38) respectively. The directions used are of course arbi-
trary since any orthogonal coordinate system can be used equivalently.

011 ZCJZ_Z
E=_—"" =Cy1— —=— 1.37
€11 t Ci1+Cop2 ( )
€33 €2 1
R S - — 1.38
€11 €11 C11/Ci2+1 ( )

1.4 Bulk Waves

1.4.1 Bulk Waves Background

In general, for wave propagation in a directigrihree types of waves are possible.
These are associated with the directions of the three particle displacement vectors
ik (k= 1,2,3). These can be referred to as having different polarisations. Pure
modes can be defined in different ways, but Nayfeh [1] and Auld [2] define them
as modes where eith&r L 1i or U || . Whereu L i, we say that the mode is
longitudinal. Wherell || A, we can say that the mode is shear. In cases where
the modes are not pure, they are described as quasi-longitudinal or quasi-shear,
depending on which they are closest to.

Combining the momentum equatidn (|1.1) and the stress-strain relation (1.2)
and the strain-displacement relationsljip|(1.4), gives the following result:

u 1 d (&u| 8uk)

Po = 2%k gx \ax T ax (1.39)
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By symmetry argumentk(@and| are interchangeable) we can simplify (1.39) to
get
Ptz = M oxeax;

We look for solutionsy; of the following form, in terms of; the bulk wavenum-
ber,U the displacement amplitude vector (which defines polarisation)iahd
propagation direction unit vector:

(1.40)

Uy = Ujel (nixi—ot (1.41)

Substituting [(1.4]1) intq (1.40), and introduciigy = Gijx /p, gives the follow-
ing:
C..
WU = TPl & 07U = g Py (1.42)

Now, we introduce the phase velocity,defined as follows:

v= % (1.43)

Usingv, equation[(1.42) can be rewritten as follows:

(i e — VA& ) Uy = 0

1.44
<:></\i| —V25i|)U| =0 ( )
where/\j = Ajja nkn;j. Clearly [1.44) represents an eigenvalue problem, where the
phase velocitiey are the eigenvalues, and thle vectors (polarisation vectors)
are the eigenvectors. In general, there will be three phase velocities, accompanied
by three polarisation vectors. These phase velocities and polarisations define a
single (quasi)longitudinal and two (quasi)shear modes. Explicitly, the eigenvalue
problem is as follows

/\11 — V2 /\12 /\13 Ul
N2 Npo—V2 Aoz Uy»=0 (1.45)
A13 Nz Ngz—V?/) |Us

An important concept to introduce at this stage isslosvness curveA slow-
ness curve is a plot of the inverse of velocity (units are therefore seconds/metre
or equivalent). Typically, a slowness curve is produced by choosing a plane in
the material of interest, and then calculating the different phase velocities for
a selection of propagation directions. Slowness is then plotted as a function of
propagation direction in a polar plot. Slowness curves feature in most texts deal-
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ing with wave propagation in solids. Slowness curves can be combined to obtain
a slowness surface, which would completely characterise the phase velocities of
the possible modes in a given material. However, there are obvious difficulties in
printing or displaying such surfaces.

Another concept which is introduced is thkew curve This is a plot which
| have only seen in Nayfeh's workl[1]. As was mentioned earlier (page 20), pure
modes are defined as being modes which are either normal to or parallel with the
direction of propagation. Skew is a measure of how far any particular mode devi-
ates from this ideal. If the mode is pure, skew will be zero. For other modes, the
skew is the angle between the polarisation vector and the direction of propagation
(for quasi-longitudinal modes) or the normal to the direction of propagation (for
quasi-shear modes).

1.4.2 Computation of Slowness and Skew Curves Background

At this point, we are ready to calculate slowness curves for a wide range of mate-
rials. All that is required are the entries from the stiffness tenggr or equiva-
lently the entries of the reduced stiffness ma@ix

We map out the slowness data by considering planes parallel tx; theis
(which without loss of generality, can coincide with tRg axis). Given a set
of material properties iki» €xpressed in the coordinate systeq X5, X3), we can
transform it toc;j expressed in the coordinate system X, X3) by rotating about
thexj axis. In this way, we can arrange that the coordinates of any direction of

propagationfi are of the form

cosoO
= 0 where 0<o<2n (1.46)
sind

when expressed in the transformed coordinate system. Once the transformed stiff-
ness matrix or tensor is obtained, the angles varied in the range & 6 < 27,

giving different propagation direction vectors, For eachi, Ajj from equation
(1.45) is obtained. The eigenvalues and eigenvectofs;adre found. The entire
slowness surface can be determined by applying different rotations g&bant
repeating the process.

An issue that caused me some difficulty when implementing this code was the
sorting of the modes (i.e. which eigenvector/eigenvalue pair corresponds to longi-
tudinal mode, which corresponds to the “fast shear” mode and which corresponds
to the “slow shear” mode). Sorting by phase velocity gives correct results in par-
ticular cases, but for some materials the slowness curves cross each other (we will
see this shortly). Nayfeh[1] indicates that the modes can be identified by looking
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at the dot and cross products of their eigenvectors with the propagation direction
A. This immediately identifies the longitudinal mode, which will generally make

a relatively small angle with the propagation direction. The two remaining shear
modes can then be sorted by how close they come to being normal to the propa-
gation direction. For some cases this is sufficient to sort the modes. However for
other more complicated materials, this leads to “curve-jumping”. An alternative
tried was to sort the shear modes by how close they came to lying along the
axis (i.e. to being perpendicular to the plane containingkthexis and the prop-
agation directions. Again, this works for some materials, but at particular points
the modes swap over leading to discontinuities in the curves.

The solution | settled on when sorting the modes is as follows. For the first
propagation direction tested, take the dot product of each polarisation vector with
the propagation direction. The vector giving the largest number (smallest angle)
is designated as the quasi-longitudinal mode. Then take the dot product of the
remaining two vectors with the vect¢d, 1,0). The mode giving the largest dot-
product is designated as the first shear mode. The remaining mode is the second
shear mode. For subsequent propagation direciipclassify the resulting eigen-
vectors by how close they come to the previous longitudinal or shear modes (again
using dot products). This works as long as eddrelatively close to the previous
one (i.e. as long as the incrementdiare relatively small). In this way, the new
vector closest to our last longitudinal vector is the new longitudinal mode. The
new vector closest to the previous first shear mode vector is the new first shear
mode. The remaining vector is the new second shear mode.

1.4.3 Examples of Slowness and Skew Curves

In this section | will present some sample slowness and skew curves calculated
with the Python code | have written. Material properties used will also be pre-
sented here. The examples chosen are the same as the ones used by Nayfeh, so
that | could more easily verify their correctness.

Aluminium

Aluminium is an isotropic material (this is not true in all cases, for example rolled
aluminium can have directionality in material properties), and has very simple
slowness and skew curves. The propagation velocities are the same for all direc-
tions. Skew is zero for all directions (all modes are pure modes). Additionally,
the two shear modes present are degenerate (they have the same velocity). The
slowness curve is shown in figdre[L.7. The material properties are shown in equa-
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tion[1.47.
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Figure 1.7: Slowness Curve for Isotropic Aluminium
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InAs

25

InAs is a cubic material. Its reduced stiffness matrix is given below for coordinate
axes coinciding with cubic axes (i.e. in its simplest form).

0.0
0.0
| 0.0

0.0
0.0
0.0

8329 4526 4526 00
4526 8329 4526 00
4526 4526 8329 00

0.0
0.0
0.0

00 00
00 00
00 00
3959 00 00
00 3959 00
00 00 3959

(1.48)

This gives the slowness and skew curves as shown below in figufes 1.8 and 1.9.
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Figure 1.8: Slowness Curve for InNAg,=0

Slowness Curve for InAs ¢=0°
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Figure 1.9: Skew Curve for InNnAgy =0

Skew Curve for InAs ¢=0°
10

10 1 1 LT S o 1 1

Rotating by an angle of 45 gives the reduced stiffness matrix shoynin (1.49).

(10386 2468 4526 00 00 00
2468 10386 4526 00 00 0O
4526 4526 8329 00 00 0O

0.0 0.0 00 3959 00 00
0.0 0.0 00 00 3959 00
| 0.0 0.0 00 00 00 1901]

Computation of the slowness and skew curves is straightforward. They are plotted

in figureq 1.1D and 1.11 respectively.

Rotating by an angle of 30 degrees (relative todhginal orientation repre-

(1.49)
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Figure 1.10: Slowness Curve for InAg,— 45

Slowness Curve for InAs (p=45°

0.6 T L T T
CYR—
SZ ...........
04 | .
02} -
or |
0.2 _ o i
04 |+ ‘“-' _
0.6 1 | ~~~~~~~~~~~ o | 1

0.6 0.4 0.2 0 0.2 04 0.6

sented by[(1.48)) gives the reduced stiffnes matrix of (1.50).

(9872 2983 4526 000 000 -—8.91]
29.83 9872 4526 000 Q00 891
4526 4526 8329 000 000 QOO0
0.00 000 000 3959 000 000
0.00 000 000 000 3959 000

|—891 891 000 000 000 2416]

(1.50)

The computed slowness and skew curves are shown in figurgs 1.12 ahd 1.13 re-
spectively.
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Figure 1.11: Skew Curve for InAg, = 45

Skew Curvefor InAs ¢=45°
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Graphite-Epoxy (65%-35%)

First, it should be noted that these curves differ significantly from those given by
Nayfeh. There is at least one error in the material properties provided by Iﬁ]ayfeh
Graphite-epoxy slowness and skew curves are shown in figures 1.14 and 1.15

4 If | remember correctly, the Graphite-Epory= 30 data cannot be obtained from the= 0
data through transformation relations. Rather, it differs in a couple of terms by a factor of -1. The
material properties given here are taken directly from the ones provided by Nayfeh, errors and alll,
though | may correct them in the future when | know which data are correct. | will soon begin
reproducing figures from Auld for further validation of this code.

Note on Tue Jun 18 15:50:35 IST 2002: | have done this for quartz, a trigonal material, in

fix]
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Figure 1.12: Slowness Curve for InAg,= 30

Slowness Curve for InAs ¢=30°
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respectively. The matrix of stiffness constants is shown in equation| (1.51).

(15543 372 372 000 000 000
372 1634 496 000 000 000
372 496 1634 000 000 000
0.00 000 000 337 000 000
0.00 000 000 000 748 000

| 0.00 000 000 000 000 748

(1.51)

Corresponding slowness and skew curves for graphite-epoxy after a 30 degrees
rotation are shown in figurgs 1]16 and 1.17. The matrix of material properties
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10

10

Figure 1.13: Skew Curve for InAg, = 30

Skew Curvefor InAs ¢=30°
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following this transformation are show in (1]52).

[95.46 2893 403 000 000 4467]
2893 2591 465 000 000 1556
403 465 1634 000 000 054
0.00 000 000 440 -1.78 000
0.00 000 000 -1.78 645 000
|44.67 1556 054 000 000 3268|

30

(1.52)
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Figure 1.14: Slowness Curve for Graphite Epaxy- O

Slowness Curve for Graphite-Epoxy, ¢=0°
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Quartz

First, it must be noted that in this discussion, the piezoelectric properties are ne-
glected. The material properties given by Auld are as follows

C11 = 8.674x 101°N/m? C12 = 0.699x 10°N/m?
33 = 10.72x 10N /m? c13 = 0.699x 10°N/m?
Ca4=5.794x 101N /m? C14= —1.791x 10'°N/nm?

Since quartz is a trigonal material, the remainder of the stiffness matrix can be
determined by substituting intp (1]26). Solving the eigenvalue problem for the
slowness and skew of the different polarisations gives the results shown in figures
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Figure 1.15: Skew Curve for Graphite Epoxy= 0
Skew Curve for Graphite-Epoxy, ¢=0°
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and 1.19. Applying a rotation af/2 about theZ axis, gives the slowness
and skew curves shown in figues 1.20 and|1.21.

We now look at propagation in the plane perpendicular toZrexis. This
means that we rotate the coordinates from the first system/Byabout thexX
axis, or equivalently rotate the coordinates from the second systeribgbout
theY axis. The resulting slowness and skew curves are shown in figurés 1.22 and
[1.23.
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Figure 1.16: Slowness Curve for Graphite Epaxy- 30

Slowness Curve for Graphite-Epoxy, ¢=30°
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Cadmium Sulfide

Piezoelectric properties are neglected in this case. The material properties given
by Auld are as follows

c11 = 9.07 x 101N /m? C12 = 5.81x 101N /m?
Ca3 = 9.38x 101N /m? 13 = 5.10x 10'°N/m?
Ca4 = 1.504x 10'°N/m?
Since cadmium sulfide is a hexagonal material, the remainder of the stiffness ma-

trix can be determined by substituting info (1.32). Solving the eigenvalue problem
for the slowness and skew of the different polarisations gives the results shown in
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Figure 1.17: Skew Curve for Graphite Epoxy—= 30
Skew Curve for Graphite-Epoxy, ¢=30°
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figureq 1.2 anfl 1.25. This is for propagation in the plane normal to the axis of
symmetry. Rotating the coordinate systemz)2 and again solving the eigen-
value problem gives the results for a plane parallel to the axis of symmetry. These

results are shown in figurgs 1]26 and 1.27.
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Figure 1.18: Slowness Curve for Quargz= 0, (X — Z Plane)
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Figure 1.19: Skew Curve for Quartg,= 0, (X — Z Plane)

Skew Curve for Quartz, ¢=0°
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Figure 1.20: Slowness Curve for Quargz= 90, (Y — Z Plane)

Slowness Curve for Quartz, =90°
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Figure 1.21: Skew Curve for Quartg,= 90, (Y — Z Plane)

Skew Curve for Quartz, ¢=90°
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Figure 1.22: Slowness Curve for Quargz= 90, X —Y Plane)

0.0004

0.0003

0.0002

1le-04

0.0001

0.0002

0.0003

0.0004

Slowness Curve for Quartz, =90°

T T T T T
L —
T
. ‘f.. .‘." %
/ N, '
: i i L
H 3/ Wi i
s i/ i ;
fod P
: y H .
3 i H H
; ] : :
} ',E /1
H V|
i i a
\ £
1 1 il 1 1

0.0004 0.0003 0.0002 0.0001

0

1le-04 0.0002 0.0003

0.0004

39



mconry @acronymchile.com

Figure 1.23: Skew Curve for Quartg,= 90, X —Y Plane)

Skew Curve for Quartz, ¢=90°
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Figure 1.24: Slowness Curve for Cdp= 0, (X —Y Plane)

Slowness Curve for Cadmium Sulfide, ¢=0°
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Figure 1.25: Skew Curve for Cd$,= 0, (X —Y Plane)

Skew Curve for Cadmium Sulfide, ¢=0°
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Figure 1.26: Slowness Curve for Cdfs= 90, (X — Z Plane)

Slowness Curve for Cadmium Sulfide, ¢p=90°
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Figure 1.27: Skew Curve for Cd®,= 90, (X — Z Plane)
Skew Curve for Cadmium Sulfide, ¢=90°
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Chapter 2

Guided Waves In Plates

2.1 Introduction

My aim in this section of the document is to summarise some information on elas-

tic wave propagation in plates. Such waves, when propagating in infinite plates
of isotropic homogeneous linearly elastic media, are known as Lamb waves. In
this document, | will also discuss wave propagation in anisotropic and inhomo-

geneous (layered) media. Although strictly speaking such guided waves are not
Lamb waves, | will use the term to describe such propagating guided modes. To
follow this discussion, it is important to have a basic understanding of propagating

bulk waves in isotropic and anisotropic media.

2.2 Lamb Waves

Lamb waves are defined as the waves propagating in a plate of isotropic material,
where the particle displacements are polarised in a plane parallel to both a normal
to the plate’s free surfaces, and to the direction of propagation (we would call
this plane thesagittal plane illustrated in Fig[ 2.]1). A second form of propagat-

ing wave which can propagate in a free plate of isotropic material is the shear-
horizontal (orSH) wave, where particle displacements a@mal both to the
direction of propagation and to the plate normal. The equations describing the
behaviour of Lamb waves are obtained by starting with the basic equations gov-
erning an elastic solid, as described in secfiof 1.1, and then applying boundary
conditions corresponding to the free surfaces of the plate. This was first studied
by Lord-Rayleigh [[9], and by Lamb [10], though a full study of the details of
dispersion behaviour was not completed until decades later. A seminal and illu-
minating discussion of the details of Lamb wave propagation is to be found in
work by Mindlin [11].

45



mconry @acronymchile.com 46

X3
x2 /
/ i ///
3 X1 Sagittal Plane 1| SH Plane
—
-

Direction of Propagation

Figure 2.1: Schematic

A brief derivation of the Lamb wave dispersion relations will be presented
here. This will be facilitated by the use of a dimensionless notation, in particular
a dimensionless frequency. The dispersion relations obtained will be solved in
order to provide dispersion data for the materials which will be modelled later.

2.2.1 Lamb Waves in Aluminium Plate

The starting point in this section is the dynamic equation for a linear elastic
solid, Equation[(1]1). A more convenient form to begin with is shown in Equa-
tion (2.1) [12], which uses the La&rconstants mentioned in Sectjon 1].3.8.
201
p%:(lJru)g—ZJruDzui (2.1)

0 represents the diveregence or dilation, and is defined in Equitidn (2.2) where the
summation has been written explicitly for clarity. If the wave is decomposed into
rotational and irrotational potentials, then the dilation represents the irrotational
component.
8u1 8u2 8u3
X1 dXo  dX3

Before going any further, it is useful at this point to introduce a dimensionless
notation which allows some useful simplification of the current analysis. If cer-
tain simplifications are made regarding material properties, then a dimensionless
treatment of the equations described so far makes it possible to express the equa-
tions in a more compact form as shown below. First, the simplification is made
that Poisson’s ratio is equal to a third,= 1/3. This is approximately the case
for aluminium. This simplification is expressed in terms of l&sconstants in

equation|[(2.B).

0= (2.2)

A =2u (2.3)
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The removal of dimensionality is done in the following way. Lengths (suck as
andu;) are expressed in terms of the plate half-thickndssee Fig[ 2]1). Time
is scaled by a time scaling factoy, which will be defined in terms of bulk wave
speeds in the material and the half-thickness of the platés thus a function
of the material properties of the plate, as well as the scale of the plate. The new
dimensionless quantities are distinguished from their dimensioned counterparts
by the use of upper case. Equatipn [2.4) illustrates the transformation.

X1 X3

Cit,h w
-  Q=— 2.4
nd n (2.4)

Note that in Equatior| (214 andc are the transverse (shear) and longitudinal
bulk wavespeeds. Confusion with earlier tergyg from the stiffness tensor is
avoided since the meaning should be clear in context, and also due to the number
of subscripts. If we now express Equatign {2.1) using this new notation, and
applying Equation[(2]3) we get the expression shown in Equdtioh (2.5).

pd?n? 92U _ 98

2.
© a2 =3 T (2.5)

We have not yet defined the time scaling facjoso for convenience we will pick
it such that

2
2_ M _ G 2,2
=@ Tae pd™n®=pu (2.6)
Thus, Equation (2]5) simplifies to give
aZUi (99 2
W_38_><5+D Ui. (2.7)

Since the dependence on time is of the f@f, Equation [[2]7) is equivalent to

Equation[(Z2.B).
a0
1?4+ Q%) Ui = -3+ 2.
(O%+ Q9 Ui = 355 (2:8)
If for eachi = 1,2,3, (2.8) is differentiated with respect ¥, and the result-
ing three equations are summed, we obtain the expressiérsimown in Equa-

tion (2.9). ,
(D2+%> 6 =0 (2.9)

A solution of Equation[(2]8) is given by

4 96

U= —@a—xi—i-ai

(2.10)
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The complementary solution termg satisfy the relations

(0*+Q%) =0 (2.11)
3061 8062 3063 .

X1 + Xy = OX3 0 (2.12)
o is expressed in terms of a potentjal
_dx _—Ix
061 == a—><3 and 063 == a—>(1 (213)

Wherey is a function ofX; andXs which satisfies
(0?+Q%) x=0 (2.14)

The solutions for the two potentiajsand6 are respectively:

% = (AsinhSX + BcoshSxg) e X1 —12T (2.15)
6 = (CcoshQXs + D sinhQXg) e X1 —12T (2.16)
where
Q°=F2-0Q?%/4 (2.17)
P =F2-0? (2.18)

Finally, the dimensionless displacemedtsandU, can be expressed in terms of
the potentialsbﬂ andy as follows:
—d¢  Jdyx

U =—+="F and Us

_—d¢  —dx
- 9Xy  9X3 N

9 + IX (2.19)

2.2.2 Boundary Conditions

Up to this point, no mention has been made of boundary conditions, or of the
geometry of the elastic space being studied. Everything mentioned in the previ-
ous discussion is valid for any isotropic linear-elastic solid. The only restriction
introduced so far has been to limit our study to plane waves, and to align our co-
ordinate system such that tike axis points in the direction of propagation. The
waves which we have defined are basic longitudinal and shear waves, which are
fundamentally characterised in equatigns]|(2.9) and2.14) respectively.

The boundary conditions which must be satisfied by the waves in the plate are

¢ is formed by absorbing the/®? in Equation[(2.1D) into thé term.
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the result of the traction free condition on the top and bottom surfaces of the plate.

033=0
33 X3=dd<= X3 =+1 (2.20)
013=031=0
These boundary conditions can be expanded using the constitutive equation of an
isotropic material[(1.34), and the definitions of the l&aoonstantd (1.35) to give

the expressions in Equations (24.21) gnd (R.22) (againfer +1).

dU; U, dUs Vs

A (axl 9% ax3> Hoxe 0 (2.21)
JoU; dUsz B

M (_8X3 + _ax1> —0 (2.22)

We have already, in Equatioh (2]19), expressed the displacetdertisdUs in

terms of potentialg andy. Also, in Equationd(2.15) anfl (2]16), these potentials
have been expressed in terms of the coordixatand constants. Substituting
from these expressions into the shear stress boundary confitioh (2.22), and ignor-
ing theu term, gives the following condition:

0’y  20% 9y
OXZ OXzdXy1 oIX?

0 forXs=+1 (2.23)

Then substitute for the potentials from Equatidns (2.15) gnd|(2.16), the following
expressions are obtained dr= +1 respectively (common exipX; —iQT terms
omitted here and in subsequent expressions for neatness).

(F2+ <) (AsinhS+BcoshS) — 2iFQ (CsinhQ+DcoshQ) =0 (2.24)
(F2+ <) (~AsinhS+ BcoshS) — 2iFQ (—CsinhQ+DcoshQ) =0 (2.25)

Recalling Equatior (2]3), the normal stress condition of Equafion](2.21) gives the
following result:

20%9 9%y 9%
- - +
IX2  IX3zdXy  IX?

=0 forXg=+1 (2.26)

And when the expressions for the potentialandy from (2.15) and[(2.16) have
been substituted in, the following expressions are obtaine& fer+1 respec-
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tively.

(F2+$%) (CcoshQ+ DsinhQ) + 2iF S(AcoshS+ BsinhS) = 0 (2.27)
(F2 + SZ) (CcoshQ — DsinhQ) + 2iFS(AcoshS— BsinhS) =0 (2.28)
It should be noted that it is possible to separate the potengialsd ¢ (and
hence displacements and stresses) into symmetric and non symmetric wave com-
ponents. This occurs naturally in each pair of boundary condition equations above,

which can be added or subtracted to give the boundary conditions for symmetric
or asymmetric waves. These separated boundary conditions are shown in Equa-

tions (2.29) and (2.30).
(F2+ <) AsinhS— 2iFQCsinhQ = 0
2iF SAcoshS+ (F?+ %) CcoshQ =0
(F2+ %) BecoshS— 2iFQDcoshQ = 0
2IFSBsinhS+ (F+S°) DsinhQ =0

(2.29)

(2.30)

In the rotational potentiaj, the symmetric wave component is given by the
AsinhS term. This means that rotation is zero on the plate centre-line, and is
of opposite sign in the upper and lower halves of the plate. The effect of this is
that the contribution to displacement of the potential is symmetric. The symmet-
ric component of the dilational potentiap, is given by theCcoshQ term. The
remaining terms, which use the constaBtandD relate to the asymmetric part
of the propagating wave. By separating the wave into symmetric and asymmetric
components, the two parts of the propagating wave can be examined individually.
Solutions to Equations (2.29) and (2.30) will exist where the corresponding
determinants go to zero. This leads to two characteristic equations, for symmetric
and asymmetric waves respectively:

4F2QS  tanhS
(F2+=)?  tanhQ
4F2QS  tanhQ
(F2+52)2 ~ tanhS

symmetric (2.31)

asymmetric (2.32)

These equations can be solved to find the possible wavelengths (equivalently wave
numbers or wave speeds) at any particular frequency.
Using, Equations] (2.29) and (2]30), consta@tand D can be expressed in
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terms ofA andB respectively. Rewritingg and¢ in this way gives:

X = AsinhS)X + BcoshSXg (2.33)
A(F? + ) sinhS B(F?+S?)coshS .
o= 2FQsinhQ coshQXsz + 2FQcosh0 sSinhQX3 (2.34)

This allows final expressions for the dimensionless displacements and the stresses
to be formulated. These expressions are shown in Equafion$ (2.85) b (2.44).

Uz symm=A (— (FZZESSA?; g‘ hScosI‘QX3 + ScoshSXg,) (2.35)

Us symm = IA <(F224Fr 2?; ('; 1S GinhQXs — F sinhsxg) (2.36)

U asymm= B (- (F2+S)costS et SSihhS)@) (2.37)

2QcoshQ

U3 asymm= iB <(F22JFF flc;gsrscosmxg —F coshS)@,) (2.38)
Orasymm= HA(F2+ ) [‘Sisrmgssinhcm + sinhS)@] (2.39)
Osasymm= I2UA (Fzg 52) 2 ;'::S coshQXs — FScosrsxg] (2.40)
O11,symm= LA {(F2 +9) SSII::S QzéFz P coshQXs + 28FCOS|’S)§:| (2.41)

B 2 —coshS
013asymm= UB (F + 32) { cosO

(F2+)° coshs
4QF coshQ

coshQXz + coshS)@} (2.42)

033.asymm= 121B

sinhQXz — FSSiﬂhSXg,] (2.43)

coshS Q2 — 2F2
coshQ QF

O11symm=iuB [(F2 +S) sinhQX3 + 2SFsinhS)§} (2.44)
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2.3 Isotropic Dispersion

2.3.1 Introduction

To characterise the vibration of an aluminium plate at any given frequency, it is
necessary to solve the frequency Equatipns {2.31)[and (2.32). In much of the cur-
rent analysis, we will restrict ourselves to looking at symmetric vibrations of rel-
atively low frequency @ < v/2). At such frequencies, there are only two possible
modes of vibration, one symmetric and one antisymmetric (gren8 Ay modes),

and as said before, for now we will restrict ourselves to the former case.

2.3.2 Preliminaries

In this section, the basic equations will be rearranged into forms more suitable
for analysis. This is done in a similar fashion to that used by Lamb [10]. The
preferable dimensionless notation will be used, with the inherent assumption that
the Lané constants are related as= 2u (true for Aluminium). For the sake of
clarity, the earlier expressions from Equatidns (2.17) and|(2.18) are repeated here:

Q®=F2-0?%/4 and F=F?-Q? (2.45)
Following Lamb [10], we introduce a term such that:
S

Only real values of andQ will be considerdﬂ F can be easily expressed in
terms ofQ andS, and then equivalently in terms @fandm, as follows:

:4Q2—82:4—mz

F2
3 3

Q? (2.47)

The dimensionless frequency equation for symmetric vibrations, given byj (2.31)
earlier in the analysis is repeated here. It has been rewritten oeig place of
Sand substituting foF from (2.47), and then simplified algebraically:

tanhmQ  3m(4—nv)
tanhQ ~ (2+mR)2

(2.48)

2maginary values of wavenumber correspond to waves that decay exponentiallyxindire
rection. Similarly imaginarf2 corresponds to waves decaying exponentially in time
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For antisymmetric vibration, the form of the characteristic equation is only slightly
different and one of the fractions is inverted:
tanhQ  3m(4—nP)
tanhmQ (24 m?)2

(2.49)

Using [2.4%) and (2.47X can be expressed purely in termswéndg as follows:

4— 4n?
3
Turning to the definition for dimensionless wave speed in the solid in equption (2.4),
and using the connection between wavenumber, frequency and wavespekgd, and

andQ in terms ofm, it is possible to writeC purely as a function ofn:

2 2
_ c Q 4 — An?
E=(—) =(=) = (2.51)
Ct F 4—m?
If mis allowed to take imaginary values, it is possible to obtain the velocities
over a different portion of the frequency speed curve. This corresponds to phase
velocities greater than the transverse wave velogitybut still lower than the

longitudinal velocity. It is easier to handle the imaginanyif by introducing a
new termn defined as

Q?=F2-mPQ%= Q? (2.50)

m=in (2.52)

Using [2.52), the characteristic equatigns (R.48) and[2.49), along with the expres-
sions forF? (2.47),Q? (2.50) and:? (2.51) can be rewritten respectively as:

tannQ _ 3n(4+n?)

— (2.53)
tanhQ  (2—n?)2 (Symmetric)
tanhQ  —3n(4+n?) (2.54)
tannQ (2 - n2)2 (Anti-symmetric) .
4 2
F2 J;” Q? (2.55)
44 4r?
02— *3 " ? (2.56)
5 4+4n?
e = - (2.57)

Here, the symmetric and anti-symmetric characteristic equations differ not only
by the inversion of the left hand side fraction, but also in the sign of the right hand
side. This is an effect of the cancellation of the imaginasrms.
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As will be seen shortly, most modes have velocities in excess of the longi-
tudinal velocityc, for some frequencies. In this regio8,and Q both become
complex. To make matters clearer, the imaginary facteill be written beside
the termQ’, which is real valuedSis then written asmQ, mbeing a real number
once more. Applying this to the relations already presented in Equafions (2.48),

(2.49), [2.50) and (2.51), gives the following expressions:
tanmQ _ 3m(4—n?)

O B e (2.58)
02— _4—;m2Qz (2.60)
2 # Q? (2.61)
@ t - 4nrn;2 (2.62)

2.3.3 Detailed Calculation of Dispersion Curves

In this section, the dispersion curves are numerically solved for a larger number
of points allowing a large portion of the dispersion diagram to be plotted. De-
pending on the wavenumber in a given region of the diagram, and on whether we
want to characterise symmetric or antisymmetric waves, the frequency equations
(2.48[2.49] 2.53, 2.54, 2.58, 2|59) are solved for a given range of valueard

n to find corresponding values €. Knowledge of the values ah (or n) and

Q allows us to compute the values @f ¢ andF through the appropriate equa-
tions, which have all been mentioned in Secfion 2.3.2. The dispersion curves were
finally calculated using a program written in Python with the Numerical Python
extensions[[13]. Plotting has been done using Gnuplot. For notes on plotting of
dispersion curves, see Section 2.4.3. The final dispersion curve plotted is shown in
Fig.[2.2. The variation of wavelength as a function of frequency for thex&de

is shown in Fig[ 2. It should be noted from Hig.]2.3 how long th&v&velength
becomes for smafl (tending to infinity a<2 goes to 0). Another point to note is
how flat the $ dispersion curve in Fig[ (2.2) is for© Q < v/2. This means that

for this range of frequencies, the wave is almost non-dispersive. As will be seen
later, the dispersion curves shown here for an isotropic plate are very similar to
those obtained for a transversely isotropic composite plate in its plane of isotropy
(see Sectiop 25 for comparison).
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Figure 2.2: Velocity/frequency dispersion plot for aluminium. Solid lines are
symmetric modes, dashed lines are antisymmetric modes.

2.4 Anisotropic and Inhomogeneous Plates

In this chapter, horizontal defects in anisotropic plates will be discussed. The elas-
tic properties of the plates will be chosen to represent a carbon-fibre reinforced
epoxy material. Horizontal defects, i.e. delaminations, are quite commonly found
in these materials. Often these occur in the manufacturing process as such ma-
terials are typically fabricated from multiple layers. Additionally, this layered
construction means that when subjected to damage, it is common for failure to
occur at the interfaces between layers.

Four laminated plate models are used. Two of these correspond to unidirec-
tional composite plates. In such plates, the reinforcing fibres are all aligned in
the same direction. This produces a material which is transversely isotropic. The
bulk wave properties of this material have been mentioned already in S@€tion
In such a material, propagation of plate waves will be considered for two propa-
gation directions: normal to the fibre direction and parallel to the fibre direction.
It will also be assumed that the fibre direction is parallel to the free surfaces of the
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Dimensionless Phase Velocity c/c,

0 2 4 6 8 10 12 14
Dimensionless Frequency (Q)

Figure 2.3: Wavelength/Frequency Plot fori8ode

plate. Such a plate is highly anisotropic. Often other material properties are re-
quired, and in such a case the direction of fibre orientation is varied from layer to
layer. One such plate will be considered here, and the layers will be offset’by 90
from each other. This arrangement leads to a somewhat more uniform distribution
of stiffness in the in-plane directions, while the plate will be substantially less stiff
in the out of plane direction. Such a plate is referred to as a cross-ply laminate.
Wave propagation and interaction with defects will be considered in such a plate
for two propagation directions.

2.4.1 Transverse Isotropy

Since transversely isotropic media are very common in engineering applications,
they will here be given a brief examination. It was seen earlier in Seton

that for propagation normal to the direction of fibres, the material behaves exactly
as an isotropic material would. Velocities of the shear and longitudinal waves
are independent of propagation direction in this plane, and the modes are always
pure modes. For propagation in an arbitrary direction, things are more difficult,
however for propagation in a plane parallel with the fibre direction, some simplifi-
cations occur. In particular, when looking at plate modes in this case, itis possible
to consider only one shear (a qu&r mode) and one longitudinal mode. The
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remaining shear mode decouples and propagates in the plattasade.

Notwithstanding this simplifications, there are significant complications when
compared with the isotropic case. In an isotropic material, the phase velocities of
the fundamental component modes were independent of their propagation direc-
tion. For the anisotropic material, these velocities depend strongly on the direction
of propagation, as can be seen in 2.6. Nayfeh [1] presents an approach to this
problem (also seen in [14, 15,116]), and this will be used here, specialised to the
particular case of propagation polarised in a plane of symmetry of a material with
at least orthotropic symmetry. Propagation in any of the planes of symmetry of a
composite transversely isotropic plate would meet these criteria.

Propagation will be assumed to be in the- x3 plane, and boundaries will be
oriented parallel to the; — x, plane. This means that the wavenumber vector can
be conveniently expressed in the form:

Ny 1 1
C Np p = Cnl 0»=keO (263)
n3 (04 (04

In Equation [(2.6B8)« is the ratio ofnz/n; while k is the wavenumber in the
direction. Using these specific material properties and the restricted wector
in the Christoffel equation as expressed in Equation {1.45) leads to a simplified
Christoffel equation as shown beldw

A1l — pV2 0 A13 u_ZI.
0 Aor — pV? 0 Up» =0 (2.64)
Aus 0 Asz—pVv?) (U3

Equation[(2.6}4) has one obvious solution, givemay— pv? = 0. If the termA,,
is expanded, and the material property restrictions of Equdtion|(1.32) are applied
then the following expression results (written in terms of stiffnesgas:

Aoz = (Co112N1N1 + Cp222M2N2 + C2332N3N3) (2.65)

Recalling Equation[(2.63), and substituting ##> in the relevant factor of the

3]t is not necessary to pursue the detailed calculations to see how the simplifications arise.
ConsiderA;, By definition, Aj» = €1 jxonjnk, Which is a sum of nine terms. Because of the restric-
tions on the stiffness tensor, the only two valuesgf, which are nonzero are fgr=1,k =2 and
for j =2,k =1 (corresponding t€;» andCgg in reduced notation). However, sinog = 0, the
corresponding terms iA;» go to zero. The same material restrictions apply to the nonzero terms
A11,A22, Az3, Ar3, but these do not (all) coincide with the zero wavenumber component.
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eigenvalue problem gives the result (now using reduced notation):
pVZ = nf(Ces+ °Cya) (2.66)

This describes an ellipse, and corresponds to the elliptical slowness curve in
Fig.[2.6.

For the current discussion, the remaining part of the eigenvalue equation is of
more interest, as it describes the (qu@&sgnd SV modes which will be compo-

nents of Lamb waves. The remaining nonzé&ypterms in Equation (2.64) are:

Aq1 = n%(Cy1+ at’Css)
Agz = N%(Css+ 0t*Cgs) (2.67)
Aiz3= n%oc (C]_3 + C55)

It should be noted that all terms contain a common fangorlf this is divided

out, then thepv? terms divided byn; becomepc?, wherec = w/k is the phase
velocity projected onto the, axis. Using this, and substituting for tAgerms into

the remaining factors of the eigenvalue equation leads to the subsidiary eigenvalue
equation:

Ci1+a’Css—pc®  a(Ci3+Css) ul _q (2.68)
o(C13+Cs5)  Css+ at’Caz—pc?) | U '

At this point, the rationale for the introduction of is clear. For a given phase
velocity c in the x; direction, values of alpha can be found corresponding to the
bulk modes with this property. In fact, Equatidn (2.68) results in a quadratic
equatiorﬂ in terms ofa:? which is shown in Equation (2.59).

Aa*+Ba?+C=0
where
A = C33Css (2.69)
B = (C11— pc?)Caa+ (Cs5 — pc?)Cs5 — (Cr3+ Css)?
C = (C11—pc?)(Cs5— pc?)
Thus, the values oft appear in matching-« pairs corresponding to upward

and downward travelling waves. These four modes will be denoted by an index
g= 1,2 3,4, and the values ak will satisfy ap = —a1 and oy = —a3. At this

4Note that this is equivalent to Equations (5.29-5.30) from Nayféh [1], but with an error cor-
rected in the expression f&x
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point, the dynamic equations governing bulk waves in a transversely isotropic
medium have been rearranged in a form that is convenient for finding bulk modes
with a particular phase velocity in the direction. Introducing free surfaces and
applying traction free boundary conditions is the next step required to define Lamb
waves and calculate dispersion curves. This requires expressions for the stresses
013 and o33 (the 023 = 0 boundary condition is satisfied by ti&H plate-mode
corresponding to the first eigenvalue discussed).

The form of the stress strain relationship applicable to transversely isotropic
materials has already been presented in Equdtion|(1.32). Selecting the stress com-
ponents of interest, substituting for strain in terms of displacement from Equa-
tion (1.4), and recalling that there is no dependence omilurection, gives the
following expressions:

Ju Ju

033 = Clga—l + C338X3 (2.70)
8U3 8u1

=Css (aX + 8_><3) (2.71)

The displacement componenisare the sum of the contributions from the four
partial waves mentioned already. It is useful to introduce a t@ynvhich is the
ratio uz/u; and which can be expressed from Equatjon (2.68) for nupate

Ugg pc? —Cy1— 0ZCss
U_lq g (C13+Css)

The stresses in Equations (2.70) and (R.71) can then be rewritten

Wq = (2.72)

4
033 = Z (C13+ OCqC33Wq)iku_lqe'k(xl+aqx3_0t)
q=1
4 .
_ Z D3qiku—1qe|k(x1+aqX3—ct)
g=1
4 .
O13 = Z Css (Wq + Olq) iku—lqe|k(x1+oq4X3fct)
q—

(2.73)

(2.74)
_ z qulkul (x1+och3 ct)

Each stress is a summation of four components. These two stresses must each go
to zero at the top and bottom surfaces of the plate=<(+d). These conditions
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can be neatly expressed in a matrix form, as follows:

D11E1  DioEx  DiszEz  DisEs 1111

0
.| D3tE1 Dz2Ex  DszsEz  DasEs U2 \ jkoq—cty _ J O
k DiiE; ' DB, ' DigEgt DByt | ) s ¢ o[ &7
D3iE;t Da2E,t DasEst DagEgt/) (U4 0
WhereEy = €k%d. TheDj; terms are given in Equatiop (2]76).
D1m = Css(Wm+ o
im 55( m m) (2.76)

Dam = C13+ omWimCas

Setting the determinant of thexd4 matrix in Equation[(2.15) equal to zero gives

the characteristic equation governing (quasi) Lamb waves propagating in a plane
of symmetry of a transversely isotropic material. In fact, it is possible to further
simplify the characteristic equation by a sequence of matrix manipul@tﬁor&r-

rive at the characteristic equation below, where the determinant has been separated
into two sub-determinants:

iD11S D13 0O 0

iD31C; iD33C3 0 0 ~0
0 0  DuC DGl ~ (2.77)
0 0 DaiS DssSs

WhereS, = sin(a1k) = sin(azw/c) andCy = cos(aik) = cos(aimw/c)

In Equation 2.7[7 S, When expanded, these sub-determinants bear a strong re-
semblance to the characteristic equations already obtained for isotropic materials.
Application of the additional restrictions on the material properties of isotropic
materials shows that for this case, both sets of expressions are equivalent. An ex-
ample calculation for this class of material is presented in Sectign 2.6 along with
dispersion curves.

2.4.2 Stratified Media

Quite separate to the issue of anisotropic, but homogeneous, material properties is
the subject of layered media. The individual layers may be themselves anisotropic,
or they may be composed of different isotropic materials. In a sense, the discus-
sion in this chapter has concerned layered media since Séction 2.2 when Lamb
waves were introduced. In that case the problem addressed consisted of a three

SDetails of these manipulations for a more generaBmatrix have been presented by Nayfeh
[1], the procedure used here is similar.
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layer system: an isotropic elastic layer sandwiched by two infinite layers of vac-
uum. More generally, the discussion of guided waves in layered media concerns
layered plates, embedded in infinite layers of arbitrary material (which may be
vacuum, fluid or solid).

The area of wave propagation in layered media has received significant at-
tention, originally from the geophysical community who sought to model wave
propagation through the strata of the Earth’s crust, but more recently from those
interested in the field of nondestructive evaluation. Various approaches have been
used, some of which will be mentioned here.

In some cases, one particular layer may be very dominant. An example of
this would be where a thin coating or cladding has been added to a plate. In such
cases, researchers have found it useful to model the composite structure by simply
modifying the boundary conditions to account for the presence of the coating [17,
18]. A similar method can be used to model the presence of a thin interface layer
between two much thicker layers by using appropriate interface conditions [19].

In other cases, it has been necessary to explicitly account in detail for all layers
present in a stratified material. The most commonly used technique is known as
the transfer matrix method, which was first developed for elastic media by Thom-
son [20] and Haskell [21].

The principle of the transfer matrix is relatively simple, even in the anisotropic
case, although the implementation can be very difficult. In broadest termsba 6
matrix is formed, relating the stress and displacement boundary conditions at the
top of a layer to those at its bottom. The matrices for multiple layers are then com-
bined based on the assumption of continuity at their interfaces. This process leads
to the formation of an overall & 6 matrix which relates the boundary conditions
at the top of the multilayered medium to those at the bottom.

A six dimensional stress displacement field vector is used), which (in the
general case) contains the three displacement componesmsl the three stress
components acting on the interface surfage

s(x3) = (Uy,Up, U3, 013, 023, 033) ' = (:) (2.78)

s(xg) is continuous across the interfaces between the layers. This means that for
two layersm andm+ 1, with field vectorssy, and sy, 1 respectively, and with
their interface at positiors = zy, the following must hold:

Sm+1(Zm) = Sm(zm) (2.79)

It is necessary to relate the field vector on the bottom of a layer to that on the top.
The displacement can be decomposed into the quasi longitudinal and transverse
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waves seen in Sectign 1.4. Six components are used, three propagating in the
positive x3 direction, and three propagating in the negatiyalirection. These
six components will be denoted by the indgx= 1,2,...,6. We will also use
an indexm, denoting the layer number. These components, for a layean
thus be summed to give the total displacement vector for a monochromatic plane

waveu™. . "
u™ = ( S ﬁqé<”q'$—wt>> (2.80)
g=1

The vectorsugq are the polarisation vectors of the relevant componeugss the
wavenumber vector of component u andn are obtained from the Christoffel
equation, which was presented earlier in Equafion (1.44). Substitutagygiven

in (2.80), into equations for streds ([1.2) ahd [1.4) gives components of stress in
layerm as follows:

6 . m
oM = (i S g€ ("q'w—“’W) (2.81)
g=1

Where the components of the stress-amplitude veggadiffer from those ofuq
(in layerm) as follows € andus being components atq anduq respectively):

(0i3)g = (CiasthtUs)g' (2.82)

Looking at layerm which has boundaries ag = z,, 1 and atxz = z;,, u and
o = (013,023, 633)T can be written as:

um _ IJT "Tzn ,Jfén m '(n1x1+n2xszt)
{Um}_ [55“ & .. ap| Hee=am-)Te (2.83)

{S(XS)m} = [Pm] [H(Xg — mel)m} g (mx1+nzxe—ot)

In Equation[(2.88B), the entriagy andoq are column vectors of length 3 and have
the same meaning as in Equations (2.80) and[2.81). Thus the first matrix on the
right hand side of the equation is ax@ square matrix. The dependence of the
field vector on position through the thicknesgs, manifests in théH(x3)] term
which is a diagonal & 6 matrix with entries ki(x3) = exp(ingqXa), Ngq) being
the vertical component of the wavenumber of ¢fiepartial wave.

The aim now is to look at the value efx3)™ at the two interfaces of the layer,
and to obtain a relation linking them. The first interface igat z;, the second
atxs = zy_1. Substituting these values into Equatipn (2.83) leads to the following
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two relations:

{8(zm)™} = [P"] [H(zm—2zm1)™] Mrtrore—ey (2.84)
{8(zm-1)™} = [P™] [I] €(watnze-oy (2.85)

Note that in[(2.8b), the Hterm has reduced to the identity matrix, while that in
(2.84) is a function of the layer thickness. Substituting from (2.85) into [2.84)
gives the following relation which relates the field vectors at the two faces of a
layer.

{(zm)}"™ = [P"] [H(@m—2n-0)™ [P"] " {s(zn1)}"

(zm - (2.86)
[T™] {s(zm-1)}

By repeated application of this relation, for all the layers in the system, a
matrix can be formed which relates the field vectors at the top and bottom sur-
faces of the medium. This matrix is the product of all the layer matric&%
and is referred to as the transfer matrix. For the general three dimensional anal-
ysis presented here, the final transfer matrix will be of dimension 6. For a
two dimensional analysis (valid for isotropic materials or for propagation along
principle axes of materials with symmetry), a4 4 matrix is formed.

The transfer matrix has been used widely in the study of Lamb-like wave prop-
agation in layered plates. Chimenti and Nayfeh [22] used the technique to look
at propagation along axes of symmetry in biaxially laminated composite plates,
as well as the more general case where the layers were allowed symmetry as low
as monoclinic and general angles of incidence were used [23, 24]. Taylor and
Nayfeh [25] considered multiple monoclinic layers where slip conditions were
allowed between layers. These papers also describe the use of vacuum or fluid
loading boundary conditions. The former amounts to a traction free surface, while
the latter only requires that shear stress on the surface be zero. An application of
this method is presented in Sectjon|2.7, and dispersion curves are calculated for a
cross-ply fibre-reinforced composite plate.

Much work involving the transfer matrix has been concerned with tackling the
precision issues which arise in its implementation. Specifically when imaginary
wave-numbers occur at high frequency-thickness products. This is the situation
when a partial wave is incident on a layer at an angle beyond the critical angle (i.e.
as grazing incidence is approached), giving rise to the imaginary wavenumber.
The presence of this imaginary term leads to exponential growth in the propagator
matrix [H], and makes computational implementation of the method very difficult
due to loss of precision. One approach taken to avoid this is the Delta Matrix tech-
nique, first proposed by Dunkin [26]. In this techniquex22 subdeterminants
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of the transfer matrices are first calculated, and the final expressions for reflection
or transmission coefficients are expressed in terms of these subdeterminants. The
subdeterminants can be calculated without incurring significant precision losses,
and their use improves the stability of the transfer matrix technique. This tech-
nique has been used by various researchers, including Kundu and Mal [27] who
also highlighted a second precision problem arising in the calculation of the field
vector for transmitted waves and proposed some ways to reorder calculations to
improve this situation. évesque and Piéh28] further improved on the method,
producing a technique for multiple isotropic layers which is reported to be highly
stable. Hosten and Castaings|[29], Castaings and Hasten [30] have published re-
sults based on a further generalisation of this method to multilayered media with
anisotropic absorbing layers, and have shown good stability. For the case of peri-
odically layered media, Potel and de Belleval/[31] have proposed the use of Flo-
guet waves. Floquet waves propagate in an infinite, periodically layered, and are
the fundamental modes of an equivalent homogeneous medium. They are found
by solving an eigenvalue problem based on the transfer matrix of one period of
the thickness. When combined with careful choice of frames of reference for the
X3 coordinate, this method can ameliorate the precision problem when analysing
periodic multilayered materials [32]. The method has also been extended to in-
clude lossy or dissipative media |33]. Floquet homogenisation has also been used
by Wang and Rokhlin [34]. Wang and Rokhlin [35] additionally used a stiffness
matrix instead of a transfer matrix, resulting in a better conditioned numerical
problem. The stiffness matrix related the length 6 vector of stresses on top and
bottom surfaces of the medium to the length 6 vector of displacements.

A more stable, but still exact, method used to study wave propagation in a
multilayered medium is the global matrix method![36, 37]. The method involves
building a large (global) matrix out of submatrices describing the behaviour of the
individual layers. For any given layer, the expression for stress and displacement
as a function of the amplitudes of the different components has already been given
in Equation [(2.8B). Rewriting it more compactly, we have:

m
{Zm} = [D™(x3)] {a™ & (nxa-+mpxe—at) (2.87)
Note that[D] is a function ofxs. It differs from the 6x 6 square matrix in Equa-

tion (2.83), because now normalised displacement polarisation vectors are used,
which explains the presence of the amplitydg vector. As in the case of the
transfer matrix analysis, it is necessary to satisfy continuity of displacement and
stress on the interface. If two layersandm— 1 share a boundary (& = z,-1),

then equating stresses and displacements from|(2.87) the following relation must
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hold:
[D™(zm-1)] {a™*} = [DM(zm-1)] {a™}

5 a™1 (2.88)
= [0z 0] 10 ] { e } = (0}
Equation [(2.8B8) accounts for one interface in the medium. The global matrix is
assembled by repeating the same process for all the interfaces in the system. This
gives rise to an expression of the following form:

[D%z)] [-DY()] o)

[Dll@] [-D?(z1)] — {0} (2.89)

DY) D'z (a”

Equation [(2.8D) is the basic form of the global matrix method. Algebraic rear-
rangement allows solutions for particular loading conditions or input signals to be
obtained. Lowel[[36] has conducted an extensive review of the development and
merits of the global matrix technique. The main advantage of the global matrix
technique is that it is inherently more stable than the transfer matrix as inhomoge-
neous waves produce only decaying exponentials when the matrix is being com-
puted [36]. It is also convenient that the solution gives rise directifatp, the
column of partial wave amplitudes which describe the behaviour of the entire sys-
tem across all layers. This information can be obtained from the transfer matrix
method also (which can even be reformulated in terms of amplitudes [31]), but
it always involves a second round of computations after the initial solution is ob-
tained. The main disadvantage of the global matrix method is that as the number
of layers increases, the size of the matrices which must be dealt with increases
also. This limitation has not stopped the global matrix method finding application
in general purpose computer programs for analysis of multilayered media [38, 39].
Another method used to tackle the problem of wave propagation in layered, ar-
bitrarily anisotropic plates is the stiffness, or discrete layer methad [40, 41]. This
method involves approximating the plate by dividing it into discrete layers. Within
each layer, the displacements are approximated by interpolation functions of gen-
eralised coordinates. These generalised coordinates can be displacements and/or
tractions at particular points through the thickness of the layer. Different interpo-
lation functions can be used, for example cubic [41, 42], quadratic [40, 43,44, 45]
or linear [40] polynomials. It should be noted, that the sublayers in this technique
are quite distinct from any physical layers which may be present in the plate being
modelled, and for accuracy each physical lamina of a composite plate is gener-
ally modelled by several sublayers [43]. Once the displacements through the plate
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have been approximated, the approximation is used with the constitutive relations
for the material to formulate the Lagrangian per unit length for each lamina. The
Lagrangian for the entire plate is obtained by summing the individual layers. Fi-
nally, application of Hamilton’s principle results in an eigenvalue problem, which
can be solved iteratively at particular frequencies/wavenumbers. The resulting
eigenvectors describe the mode shapes. These contain the generalised coordi-
nates, which can be substituted into the interpolation functions. The eigenvalues
provide the wavenumbers/frequencies, depending on how the algebra has been
arranged.

An advantage of this method is that it is computationally quite economical [40],
and the difficulty in finding roots of the exact dispersion relation is avoided as now
only an eigenvalue problem needs to be solved. Accuracy is preserved though,
both for unlayered/ [40] and for layered medial[43], and results obtained agree
closely with those obtained from methods without approximation. Indeed, the re-
sults from the approximated method can be used to seed a more accurate technique
with useful initial guesses for roots [43]. Finally, the overall solutions provided
by the stiffness method may be coupled with finite element analysis of specific
regions for greater flexibility [46, 47].

It is worth noting that for many laminated materials (such as fibre reinforced
polymer composites), as the number of layers increases and the frequency de-
creases (wavelength increases), very approximate methods can provide quite ac-
curate results. In this way, it is possible to treat layered plates as homogeneous
anisotropic plates with appropriate material properties, as was done by Karunasena
et al. [43].

2.4.3 Plotting Dispersion Curves

To actually plot the dispersion curve, we need to find combinations of frequency
and phase-velocity (or wavenumber) where the determinants already discussed
go to zero. One way to do this [36] is to locate one point on each of the higher
order curves by scanning across frequency for a fixed wavenumber in the long
wavelength case (this would be a horizontal line near the top of the plot on the
dispersion curves shown here). Then, using curve-following techniques, we can
compute further points on the curves at shorter wavelengths. Difficulties arise
since the curves will in general cross each other and will also become very close
together at higher frequencies. However, this technique is computationally ef-
ficient, and makes it straight-forward to identify and plot individual dispersion
curves. The technique is also quite general. Unfortunately, it is rather difficult to
reliably code such an algorithm.

For the case of dispersion curves in simple materials where it is easy to see the
behaviour of the governing characteristic equations (e.g. Isotropic disgersion2.3),
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it is possible to set up a tailored solution scheme that can isolate specific curves
(e.g. using knowledge of the tangent terms occuring in characteristic equations
such as[(2.53)). This has the significant disadvantage of being very non-general.
Another possibility, also discussed in [36], is to calculate the value of the rele-
vant determinant everywhere in the frequency-wavenumber space of interest, and
then to highlight the points/curves where it becomes zero. This is obviously quite
computationally intensive. However, it is a very simple method to implement, in
particular if a program code that can automatically handle complex numbers and
produce contour plots with little fuss. Satisfactory systems for implementing such
a solution include Matl@)or Python and Gnuplot. By doing a contour plot with
3D data, and plotting only the contours fo£ 0, the relevant dispersion curves are
produced. Although it is not possible to automatically plot individual dispersion
curves in this way, it is possible to plot the symmetric and antisymmetric parts of
the spectrum separately for materials with a central plane of symmetry (since the
relevant characteristic equations decouple in this case).

2.5 Propagation Normal to Fibres

2.5.1 Material Properties

We will look here at a transversely isotropic material. As has been mentioned,

an example of such a material is unidirectional graphite fibre reinforced epoxy.

This term is very broad and describes a wide range of materials. Sample material
property data have been provided by Potel and de Belleval [32], and are shown
below.

Cy1=135GPa Ci» = 6.3GPa (2.90)
Ci13=5.5GPa Cs3 = 1259GPa (2.91)
Cus= 6.2GPa p = 1600kg/m° (2.92)

Two planes of propagation are particularly interesting when looking at a material
such as this one. The first is the plane of transverse isotropy (i.e. propagation in
the plane normal to the fibre direction and axis of symmetry). This is the plane
denotedB in Fig.[2.4. This gives the slowness curves shown in Fig. 2.5. As
can be seen, the slowness (and hence velocity) is independent of the propagation
direction. This is why the plane is referred to as a plane of transverse isotropy.

6Thanks to Catherine Potél [48] for pointing out this approach’s usefulness even for plotting
dispersion curves for isotropic materials in personal correspondence via a visiting student in UCD,
Johnny Caron
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Figure 2.4: Schematic of propagation directions

Three distinct velocities are observed, with the longitudinal wave being the fastest
(smallest slowness).

Also of interest is to look at propagation in a plane normal to the plane of
transverse isotropy (and hence parallel to the fibre direction). Such a plane has
been highlighted in Fig. 24 and is denot&din fact, any plane normal to plane
B would be equivalent. The slowness curves for this case are shown in Fig. 2.6.
In this case the propagation direction has a very powerful effect on the velocity
of propagation. The direction of the fibres is parallel to the vertical axis in the
illustration. In this direction, the slowness of the longitudinal and first shear modes
is at a minimum. This is so for the longitudinal mode because in this direction of
propagation it is stretching the fibres which are far stiffer than the epoxy matrix.
Similarly, the shear mode is shearing normal to the fibres, which is the stiffest
shear modulus of the plate. Also worth noting is that for propagation along the
fibres, the two shear modes have equal slowness/velocity. This is because for this
direction of propagation, they are equivalent (both involving shearing normal to
the fibres). For other propagation directions, each shear mode has quite a different
interaction with the plate and thus a different slowness.

For the perpendicular direction (normal to the fibres), the slownesses become
identical to those seen in the plane of transverse isotropy (this is a direction shared
by both planes of interest.
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Slowness Curve for Graphite-Epoxy, ¢=0°
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Figure 2.5: Slowness curves for propagation in the plane normal to the fibres
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Slowness Curve for Graphite-Epoxy, ¢=0°
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Figure 2.6: Slowness curves for propagation in a plane parallel to the fibres
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2.5.2 Dispersion Curve

Wave propagation in a plane normal to the fibre direction in a transversely isotropic
composite is equivalent to propagation in an isotropic plate, and this simplifies
greatly the calculation of a dispersion curve for the material. This property can
be seen in the slowness curves shown in Figl 2.5 for graphite-epoxy compos-
ite. Earlier, in Fig[ 1.24, we saw the same property in the propagation of waves
in Cadmium-Sulphide, another transversely isotropic material. In each case, the
slowness curves are all circles, indicating that the slowness (and hence phase ve-
locity) is independent of propagation direction for waves polarised in this plane.
A dispersion curve for Lamb waves in a plate of such a transversely isotropic ma-
terial is presented in Fi§. 2.7. The material used is the graphite fibre reinforced
composite mentioned in Sectipn 1}4.3 (also a transversely isotropic material, al-
though I did not plot slowness curves to highlight the plane of transverse isotropy).
The dispersion curve is plotted for propagation where all motion is restricted to
the plane corresponding to the slowness curve of[Fig. 2.5. For such a polarisa-
tion, the material behaves exactly like an isotropic material. The effective moduli,
however, are different to those of aluminium, which were used in the calculation
of Fig.[2.2. The plane of transverse isotropy beingXhe- X plane, the effective
values of the Lara constants are, by Equation (1.35),

A= C1»=6.3GPa

1 1 (2.93)
i =Ce6= 5 (C11—C12) = 5 (135 6.3) GPa= 3.6GPa

The effective Poisson’s ratio is, by Equatign (1.38)11/Ci2+ 1)‘1 = 0.318.
The fact that this is different from the Poisson’s ratio of aluminium means that
the dispersion curve will have a somewhat different shape to that observed for
aluminium. The generated curve is shown in 2.7. This plot has been pro-
duced using the contour technique described earlier for isotropic materials like
aluminium. At first glance, the dispersion curves look the same as those obtained
for aluminium. This is unsurprising given that Poisson’s ratio is quite similar for
both materials (and remembering, of course, that the curve for the composite ma-
terial applies only to a single plane of polarisation). However, there are some
interesting points of difference between the curves for the materials. Note, for
example, the crossing &3 and S3 which occurs at approximatel® = 6.3 and
c/ct = 6.5. In the case of aluminium, these modes also cross, but do so only at
Q =2 and in the limit asc/c; — .

An effect of the change of Poisson’s ratio is that the analytical points on the
curves (e.g. the cut-off values 6I) no longer happen at such mathematically
neat locations on the graph. Just as making the assumptio@u simplified the
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Figure 2.7: Velocity/frequency dispersion plot for unidirectional graphite fibre-
reinforced epoxy, in plane of transverse isotropy. Solid lines are symmetric
modes, dashed lines are antisymmetric modes.

writing of the equations governing the behaviour of a free plate, it also simplified
the computation of the final dispersion curves.

Finally, although the use of dimensionless notation has simplified the previ-
ous discussion, it is important to realise that thgerm used in the definition
of dimensionless wave-speed and frequency is a function of material properties
(2 = u/p). For aluminium,c = 3.15kmy/s, while for theX; — X plane of the
composite material discussed the velocitg;is- 1.50km/s. These velocities can
also be obtained by examining the slowness curves inFigs 1[7 dnd 2.5, and invert-
ing the value of slowness corresponding to the shear mode.
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2.6 Propagation Parallel to Fibres

2.6.1 Dispersion Curve

In this instance, the guided waves are propagating parallel to the fibre direction.
This is equivalent to rotating the plate orientation of the preceding Séctipn 2.5 90
degrees about the plate normal. The analysis of the propagation of waves in this
system has been discussed in Sedtion P.4.1. A sample calculation will be pre-
sented here, which will give a dispersion diagram for guided waves propagating
in the material subject to this orientation.

The same material properties will be used as in the previous section. These
have been detailed in Equatiofis (1.32) dnd (2.90). As for the case of a plane of
transverse isotropy, the contour method will be used to generate the dispersion
curves. Although this method is quite simple, its application is not as straightfor-
ward in the current case as it is for isotropic or transversely isotropic materials.

Due to the additional anisotropy in the plane of propagation, the characteristic
equation must be reformulated for each value of phase velocithis is done by
solving the quadratic Equati¢n 2]69 to find the admissible values(@f63). Two
values ofo? are found corresponding to four valuesogf These are denotetlo;
and+as. Having found the values @ which apply to a particular phase velocity
(i.e. those bulk modes with the appropriate wavenumber irxitddrection) it is
possible to solve the characteristic Equatfon (2.77). This is rewritten explicitly as:

Sin(OC]_CO/C) COS(OCg(D/C) - D13D31

cogjayw/c)sin(ozm/c)  Di1Das (2.94)
sin(oyw/c)cogozm/c)  Di1iDas (2.95)
cofayw/c)sin(ozw/c)  Di3Day '

The former of these describes the relation between phase velocity and frequency
for symmetric modes, while the latter relates to antisymmetric modes of prop-
agation. In these expressions, the only influence of frequency is threugh

the trigonometric terms. The andD terms are purely functions of the phase
velocity ¢ and the material properties. Thus for each value of the desired
range,o, as, D11, D33, D13 andDs3q are calculated. Then, the residual is calcu-
lated for a range of values of frequenay)( thus plotting one horizontal stripe

on the dispersion curve. Once the calculation has been performed for the entire
frequency-velocity space, the zero contour is plotted, corresponding to the disper-
sion curves. In Fig. 2|8, dimensionless frequency and velocity are again used. The
definition of these quantities is somewhat more arbitrary here than it was in the
case of isotropic materials, or in the case of transversely isotropic materials for
propagation in the plane of isotropy. Now, there is no single meaning to the ve-
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Figure 2.8: Velocity/frequency dispersion plot for graphite fibre reinforced com-
posite, in plane parallel to fibres. Solid lines are symmetric modes, dashed lines
are antisymmetric modes.

locity ¢, as the velocity of the shear mode varies with bulk propagation direction
(recall Fig[2.6). To aid comparison with the dispersion curves for waves propa-
gating in the same material in the plane of transverse isotropy, the same value of
c: will be used, which corresponds to a velocity of 1500m/s.

Comparing Fig$ 2|8 ar{d 2.7, there are obviously some profound differences.
Most notable is that thegSnode now has much higher phase velocities in its ini-
tial non-dispersive region. Additionally, this flattened region is even more flat and
linear than it was for propagation in the plane of transverse isotropy. Also notable
is that the plateaus in the dispersion curves are far more distinct, and flatter than
for the earlier propagation direction. This is especially clear for the symmetric
modes. Another difference is that the cutoff frequencies have been shifted up-
ward, meaning that now fewer curves appear on the plot, even though the range
of frequencies used is the same and the range of velocities plotted [n Fig. 2.8 is in
fact greater than that used in Fig.]2.7. The mode that shows the least difference
is the Ap mode, which has the same shape for both materials, and similar (though
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somewhat higher) phase velocity. In many other ways, both dispersion curves are
qualitatively quite similar, for example in the limiting behaviour as frequency or
phase velocity tend to infinity.

2.7 Cross Ply Composite

2.7.1 Dispersion Curve

A natural progression from the previous two sections is to look at a cross-ply lam-
inate plate. Such a composite is formed from multiple layers of fibre-reinforced
polymer material. As opposed to the plates just described, here the fibre direction
is alternated from layer to layer. This gives a plate which has a more uniform
in-plane strength. The out of plane strength is the same as for a unidirectional
plate formed from the same laminae. While it would be possible to look at prop-
agation in any arbitrary direction, matters simplify considerably if the analysis is
restricted to propagation in a plane coinciding with the planes of symmetry of the
component laminae.

By restricting the propagation to planes of symmetry, it is possible to use the
simplified expressions of Sectipn 2.4.1 to describe the behaviour of the individual
layers. The dispersion characteristics will be determined using the transfer matrix
method, which has been described in Sedtion P.4.2. Due to the choice of propa-
gation direction and material properties, the current analysis will be simpler than
that outlined in the earlier exposition of the transfer matrix.

As before, propagation will be restricted to tke— X3 plane. Wavenumber
will again be expressed in terms of a teomas shown in Equation (2.63). Since
propagation is in a plane of symmetry, the Christoffel equation allows easy sepa-
ration of the shear-horizontal component from the shear-vertical and longitudinal
displacements as shown in Equatipn (2.64). This means that the quadratic Equa-
tion (2.69) can be used to find the valuescotorresponding to a particula
phase velocity. To arrive at the final dispersion relation, it remains to account for
the interfaces between the discrete layers comprising the overall plate.

As noted earlier in the discussion of stratified media, it is useful to formulate a
displacement-stress vector, as shown in Equafion](2.78). Since the displacements
are polarised in th&X; — —X3 plane, and the only applicable stressesareand
033, the expression can be simplified somewhat. Bhgctor can be written in
terms of the componeht; amplitudes of the various components as follows for a
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This is equivalent to Equatioh (2]83), though it has been simplified for the current
analysis. As in the previous expression, fHéterm is a diagonal matrix (here of
dimension 4x 4) with entries Khy(l) = exp(ikamxz). Thews, wg andD13, D13,

D31, D33 terms are as given in Equations (4.72) gnd (2.76) respectively. Writing
this expression for both the tops(= zy_1) and bottom X3 = z,) interfaces of

the layer, and substituting from one into the other (as was shown in Sectioh 2.4.2)
leads to the following expression, whetés the thickness of the layen, and[P™]

is the square matrix from Equatidn (2]96).

{s(zm)™} = [P"] [H(A)™] [P") " {s(zm-1)™ = [T"] {s(zm-1)"} (2.97)

Since the stress and displacement at the bottom of one layer must be the same as
the stress and displacement at the top of the next layer, repeated application of this

procedure allows the stresses and displacement at the top of the plate to be related
to the bottom of the plate:

{s0)} = [T [T7]... [T {s(m} = [T]{s()} (2.98)

At this point, there are two options regarding the calculation of dispersion
curves for a free plate. The first option is to set the stresses at the top and bottom
surfaces equal to zero. This results in the following equation:

ug Ti1 Ti2 Tiz Tia| (U]
Wl _ Tt T2z Tos Toa| J U5 (2.99)
0 Ta1 Ta2 T3z Taa| | O '
0 Ta1 Ta2 Taz Tag| O
This gives a characteristic equation:
Ta1Ta2— T32T41 =0 (2.100)

Solving Equation[(2.100) provides the dispersion characteristics for the plate.

If the plate is restricted to symmetric construction (i.e. midplane of the lami-
nate is a plane of mirror symmetry), then alternative characteristic equations are
available. The bottom of the plate is still a free surface, but it is only necessary
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to account for layers up to the plate midplanen layers are included, then this
relates to a plate withrlayers in total. Two sets of boundary conditions for the
plate midplane are appropriate, and these correspond to symmetric and antisym-
metric modes of the plate.

Looking first at the case of symmetric modes, it has been noted repeatedly that
this requires verticalus) out-of-plane displacements to be zero on the midplane
of the plate. It is also necessary for the plate centreline to have zero shear stress.
This produces the equation

ug Ti1 Ti2 Tiz Taa| (U]
ud _|Tr T2 Toz Toa 0
0 Ta1 Tz2 Tz3 Taa| | O (2.101)
0 Tar Taz Taz Taa| 0%

T31Tas—T41T34 =0

Alternatively, for antisymmetric motion, in-plane displacemeni$ (hust be zero
on the midplane, and normal stresses must go to zero. This gives the characteristic
equation:

ug Ti1 Tiz Tiz Tig 0
Wl |Tor T2 Toz Toa| ) U§
0 Ta1 T2 Taz Taa| | o1 (2.102)
0 Tar Taz Taz Tag 0

TaoT43—Ta2T33 =0

In every case, the total transfer matfi¥ is reformulated for each value of the
X1 phase velocitye. Then, values of frequency which set the required residual to
zero are determined. The number of computations required increases significantly
as the number of layers increases, because in general a transfer matrix must be
computed for each layer. This makes computations considerably slower than in
the case of a transversely isotropic material. If there are several identical layers
with the same material orientation and properties and the same thickness, then
it is possible to only compute th@] for these layers once, and then include it
repeatedly as appropriate in the calculation of the global transfer matrix.

In the current analysis, symmetric plates will be considered. Thus, the char-
acteristic Equationg (2.1p1) anld (2.102) can be used. The material used in the
individual layers will be the same as that discussed already in the two orientations
of unidirectional plate. The composition is as indicated in Fig. 2.9, which shows
two views on the same composite lay-up of alternatedril 90 layers. The di-
agram depicts the plate geometry in two planes of propagation. Half the plate is
shown. The cross-section shown in Hig. 2.p(b) is taken in a plane perpendicular
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Figure 2.9: Crossply plate geometry is of stacking sequena®(), 90,0, 90)s,
(b) (0,90,0,90,0)s.

to that of the cross-section in F[g. 2.9(a). The pattern of dots denotes laminae for
which propagation is in the plane of transverse isotropy, while the horizontal line
denotes layers for which propagation is parallel to the fibre direction. The appro-
priate material properties, when used in the calculation scheme discussed earlier in
this section, produces the dispersion behaviour shown i Fig 2.10 for propagation
in the plane shown in Fif. 2.9(a). The definitions of the dimensionless quantities
use the same value of as was used in the previous two unidirectional composite
plate dispersion curves. As in Section|2.6, this selection is somewhat arbitrary,
but it greatly facilitates comparison between the different plate orientations and
geometries.

Clearly, the dispersion behaviour shown in Hig. 2.10 is different to that of
a plate composed entirely of either of the two constituent material-orientations.
First, it is apparent that the magnitude of the low frequency phase velocity of the
Sy mode is located between that found for propagation in the plane of transverse-
isotropy, and that for propagation parallel to the fibres. Similarly, the plateaus
in the other curves occur at velocities between those seen in the previous two
material orientations. This is unsurprising given that the plate studied here is a
mixture of the properties of the plates studied in the previous two subsections. The
number of curves appearing on the dispersion plot (13) also places the crossply
between the previous two cases (12 and 14), indicating that the location of cut-off
frequencies is higher than in the isotropic case, but lower than the parallel-to-fibres
case.

The relatively sharp first bend in thg 8urve seenin Fig. 2.10 is similar to that
seen in the case of parallel to fibre propagation. However, for higher order modes,
the shapes of the curves are more reminiscent of those seen for propagation in
the plane of transverse-isotropy, as the plateaus are not so horizontal as those in
Fig.[2.8.

The noisy band at the bottom of the dispersion plot is an annoyance. A similar,
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Figure 2.10: Velocity/frequency dispersion plot for graphite fibre reinforced cross-
ply composite as shown in Fig. 2.9(a). Solid lines are symmetric modes, dashed
lines are antisymmetric modes.

but less obtrusive, effect occurred even in the case of the transversely-isotropic
plot shown in Fig[ 2J7. In that case it manifested as a single additional line close
to the bottom of the plot. This is a consequence of plotting the data using a
contour method, and also perhaps an artifact of the computation scheme. It only
becomes truly problematic if dimensionless frequencies in the réngel6 are

to be plotted.

Finally, it is worthwhile to consider the dispersion behaviour for the same plate
shown in Fig[ 2.9(&), but for propagation in a plane at right angles to the propaga-
tion plane used to generate Hig. 2.10. For this direction, the layers where formerly
propagation was in the plane of transverse isotropy now have propagation parallel
to the fibres. Similarly, planes that had propagation parallel to the fibres are now
isotropic. Thisis as shown in Fig. 2.9(b). The dispersion curve produced is shown
in Fig.[2.1].

The dispersion curve produced is quite similar to that observed for the first
propagation direction. The main difference observed is that the velocity of the
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Figure 2.11: Velocity/frequency dispersion plot for graphite fibre reinforced cross-
ply composite as shown in Fig. 2.9(b). Solid lines are symmetric modes, dashed
lines are antisymmetric modes.

Sy mode, and the plateau velocities of the higher order modes, are higher than
they were for the first propagation direction, while still being lower than those
observed for a unidirectional plate with propagation parallel to the fibres. This
is unsurprising given that now 60% of the layers have their fibres aligned in the
propagation direction, compared to 40% before. This makes the plate somewhat
stiffer in the propagation direction, leading to an increase in the phase velocity.
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